‘Whitestein series
WY in Software Agent Technologies

Chris van Aart

Organizational
Principles

for Multi-Agent
Architectures

Birkhaduser

Whitestein Series in Software Agent Technologies

Series Editors:
Marius Walliser
Stefan Brantschen
Monique Calisti
Thomas Hempfling

This series reports new developments in agent-based software technologies and agent-
oriented software engineering methodologies, with particular emphasis on applications in var-
ious scientific and industrial areas. It includes research level monographs, polished notes
arising from research and industrial projects, outstanding PhD theses, and proceedings of
focused meetings and conferences. The series aims at promoting advanced research as well
as at facilitating know-how transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies AG was founded in 1999 with the mission to become a leading
provider of advanced software agent technologies, products, solutions, and services for vari-
ous applications and industries. Whitestein Technologies strongly believes that software agent
technologies, in combination with other leading-edge technologies like web services and
mobile wireless computing, will enable attractive opportunities for the design and the imple-
mentation of a new generation of distributed information systems and network infrastruc-
tures.

www.whitestein.com

Chris van Aart

Organizational
Principles

for Multi-Agent
Architectures

Birkhauser Verlag
Basel - Boston - Berlin

Author:

Chris van Aart

Acklin B.V.
Taxandriaweg 12b
NL-5142 PA Waalwijk
The Netherlands
e-mail: chris@acklin.nl

2000 Mathematical Subject Classification 68735, 68U35, 94A99, 94C99

A CIP catalogue record for this book is available from the
Library of Congress, Washington D.C., USA

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ISBN 3-7643-7213-3 Birkhauser Verlag, Basel — Boston — Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage

in data banks. For any kind of use permission of the copyright owner must be obtained.

© 2005 Birkhauser Verlag, P.0. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media

Cover design: Micha Lotrovsky, CH-4106 Therwil, Switzerland
Printed on acid-free paper produced from chlorine-free pulp. TCFo
Printed in Germany

ISBN 10: 3-7643-7213-3

ISBN 13: 978-3-7643-7213-2

987654321 www.birkhauser.ch

Acknowledgments

This book has been written in the period 1999-2004 under the supervision of Prof. Dr.
Bob Wielinga and Prof. Dr. Guus Schreiber of the department of social informatics sci-
ence, University of Amsterdam. Hereby I would like to thank Bob Wielinga and Guus
Schreiber, especially for their enthusiastic and intensive supervision, support and guid-
ance.

During the writing of this work, I have been working on the IBROW project (IST-
1999-19005) with the I-team: Wenjin Lue, Monica Crubezy, Arthur Duineveld, Enrico
Motta, Mark Musen, Borys Omelayenko, John Dominque, Maite Lopez, Frank van Harme-
len, Annette ten Teije and Mario Gomez.

At the University of Amsterdam, several people helped me with technical, admin-
istrative, I&TEX related, Linux related, graphical, prolog related and juggling related is-
sues. Therefore, I would especially like to thank Richard Benjamins, Anjo Anjewierden,
Wouter Jansweijer, Jan Wielemaker, Maarten van Someren, Machiel Jansen, Saskia van
Loo, Fransje Enserink, Laurens Ekkel, Vannessa Evers and Dennis Beckers.

Next, I would like to thank my old Bolesian colleagues: Gert-Jan Beijer, Kris Van
Marcke, Bob Swart, Niels Postma, Paul Siteur en Dave Henneman who helped with de-
velopping of the 5C model.

The Beangenerator described in chapter 6 is developed in close cooperation with
Telecom Italia Lab. Hereby, I would like to thank Fabio Bellifemine and Giovanni Caire
for their review work on the original paper and the development of the JADE environment.
Furthermore, thanks to Valentina Tamma for her expertise on the field of the English
language and culture, Italian delicacies, ontologies and of course (semantic) webservices.

My colleagues at Acklin helped me with support, distraction, motivation, compiling
Linux kernels at high speed, mathematical issues and lessons of life. Therefore, I would
like to thank: Jan Smulders, Patrick Storms, Leo Blommers, Geert Graat, Michiel van
Hulst and Joélle Smulders.

Finally, I would like to thank my friends and family, who did not really understand
the material I have been worked on, but supported me in several other ways, in particular:
Jan en Wilma van Aart, Peter en Agnes Behet, Leon en Loes van Aart, Willem en Bianca
van Aart, Paul, Ina en Gertske Kuiper, Hubert Borghans, Dr. C. Meijer, Marloes Wolfs,
Rogier Thissen, Marie Pauline van Voorst tot Voorst and Nik Baerten.

Contents

1

2

Introduction

1.1 Background
1.2 ResearchQuestions,
1.3 Approach
1.4 Outline e

Agent Organization Framework

2.1 Introduction
2.2 Building Blocks of Agent Organizationalmodels
221 Concepts
2.2.2 Organizational Relations
2.2.3 Coordination Mechanisms
2.3 Organizational Structures
2.3.1 Machine Bureaucracy
2.3.2 Professional Bureaucracy
233 Adhocracy
2.4 Agent Organizational Design Activities
241 TaskAnalysis
2.4.2 Operator Collaboration Design
2.4.3 Organizational Design
2.5 Agent-Based Supply Chain Management
251 TaskAnalysis
2.5.2 Operator Collaboration Design
2.5.3 Organizational Design
2.54 Implementation
255 Results
2.6 Discussion.

Coordination Strategies for Multi-Agent Systems

3.1 Introduction

3.2 Coordination as Problem-Solving,
32.1 CoordinationTask

viii

3.2.2 Task-MethodOntology
3.3 Coordination Strategy Methods
3.3.1 Coordination by Direct Supervision
3.3.2 Coordination by Standardization of Work
3.3.3 Mutual Adjustment
3.4 Implication for External Agent Design
3.4.1 Operator AgentBehavior
3.42 Manager AgentBehavior
3.5 Miniexperiments
3.5.1 DirectSupervision
3.5.2 Standardizationof Work
3.5.3 Mutual Adjustment
3,54 Evaluation
3.6 Discussion.

Five Capabilities Model

4.1 Introduction
4.2 TheFive Dimensions
42.1 CompetenceModel
4.2.2 CommunicationModel
423 SelfModel
424 PlannerModel
4.2.5 EnvironmentModel
4.3 The 5C Architecture
4.4 International Insurance Traffic
441 Approach
442 GreenCard Traffic
443 AgentCollaboration
4.4.4 Interface To The Back-Office System
445 TheKirSystem
4.4.6 Operationalization
447 Extension
448 Evaluation
45 Discussion. e
Interoperation within a Complex Multi-Agent Architecture
5.1 Introduction,
5.2 IBROW Approach
5.3 Agent Architecture oL
53.1 UserSpace,
532 BrokerSpace
5.3.3 ExecutionSpace
5.4 Levels of Interoperability

5.4.1 Technical Interoperability

Contents

Contents X

5.4.2 Syntactic Interoperability, 109

5.4.3 Semantic Interoperability 110

5.4.4 Coordination Interoperability 113

5.5 Implementation 117

5.5.1 TechnologySet 118

5.5.2 AgentImplementation 120

5.53 AgentLog 123

5.54 InspectionTools 126

5.6 Classification of Conference Submissions 129

5.6.1 Brokering 130

562 Execution 131

57 DISCussion 135

6 Message Content Ontologies 139

6.1 Introduction 139

6.2 OntologiesinaNutshell 140

6.3 Message Content Ontology Framework 142

6.3.1 Agent Communication Meta Ontology 143

6.3.2 ReferenceModel oL 143

6.3.3 Message Content Ontology 149

6.3.4 Message Content Ontology Creation 151

6.3.5 Message Content Ontology Application 155

6.3.6 AgentDesign L. 158

6.4 Operationalization of Ontology-based Communication 158

6.4.1 Message Content Ontology Implementation 159

6.4.2 Message Content Ontology Application 167

6.4.3 Application of Bean Generator 169

6.5 Legal Advisor 170

6.5.1 Architecture. 170

6.5.2 Message Content Ontology Design 173

6.5.3 Simple Scenario Lo 174

6.5.4 Evaluation 176

6.6 Discussion. e 176

7 Conclusions 179
7.1 Application of Organizational Decomposition Principles and Coordina-

tion in Multi-Agent Systems L. 179

7.2 Coordination Mechanisms for Multi-Agent Systems 180

7.3 Agent Design Principles L 0oL 183

7.4 Discussion and Future Research 184

Summary 187

Bibliography 191

Chapter 1

Introduction

1.1 Background

In this work, we develop a framework for the design of multi-agent systems inspired
by (human) organizational principles. Organizations are complex entities formed to over-
come various limitations of individual agencies, such as cognitive, physical, temporal and
institutional limitations. There is a parallel between the complexity of organizations and
multi-agent systems. Therefore, we explore the use of concepts, methods and techniques
from human organizational design as architectural principles for multi-agent systems.
Three research lines are presented: organizational modeling and coordination, interoper-
ability and agent models. Organizational modeling and coordination are concerned with
how resources (i.e. agents) can be identified and related to each other. In order to have
agents cooperate, several issues of interoperability have to be addressed. Agent models
deal with the design of individual intelligent software agents, taking into account typical
features of agent intelligence.

Every (human) activity raises two challenges: division of labor and coordina-
tion [Mintzberg, 1993]. Division of labor is the decomposition of work (or goals) into
various distinct tasks. Coordination refers to managing relations between these tasks to
carry out the work. The patterns of division of labor, responsibilities (people who do
the work), clustering of responsibilities into units and coordination between units can
be defined by organizational structures [Galbraith, 1973]. The design of an organization
should cover how one or more actors are engaged in one or more tasks, where knowledge,
capabilities and resources are distributed. Such a design can be seen as a set of networks
and procedures that link actors, tasks, resources and skills. The theory of division of labor
originates from Adam Smith, who argues that organizations are characterized as a way
for assigning resources and responsibilities to working “units” [Smith, 1776]. Every unit
is responsible for a task related to its role within an organization.

One of the first studies on organizational modeling has been later classified as mech-
anistic organizational modeling. Mechanistic organizations are designed as machines.

2 Chapter 1. Introduction

This approach is known as classical management theory for designing organizational
structures [Fayol, 1949]. Designing individual positions as part of a machine is known as
scientific management [Taylor, 1947]. The mechanistic approach is effective in stable en-
vironments, but another approach to design organizational structures is organic organiza-
tions, where organizations are designed as if they were organisms. Organic organizations
can be seen as open systems where the organizational members (i.e. staff) must survive
(e.g. by adapting) in changing environments and have life cycles. The organic organiza-
tions approach is effective in situations characterized by rapid changes in the environment
and the staff. Morgan adds another approach: the organization as an information process-
ing brain [Morgan, 1996]. By combining different elements (i.e. competences), function-
ality can emerge. Knowledge is distributed and by removing one element, the function of
that element is taken over by another element, making the organization “self-organizing”.
A discussion of studies on organizational structures can be found in [Morgan, 1996].

Several considerations can be made when making decisions about organizational
design. Galbraith divides these decisions into strategical, organizational and staff re-
lated [Galbraith, 1973]. Strategic considerations look at the distinctive competence or
domain of an organization. The structure of an organization will be formed according to
products or services to be offered, customer/clients to be served, technology to be utilized
or location at which work is to be performed. Furthermore, the objectives and goals of
the organization play a major role. Types of goals range from long to short-term and from
economic to social. The organizing mode determines how to decompose the overall task
into subtasks combined with coordination mechanisms to reintegrate the results of these
subtasks in order to achieve the overall goal. Considerations related to staff concern se-
lecting people (actors), designing tasks and arranging incentives or motivations (such as
rewards) for people to do their job.

Many human organizations can be viewed as information processing systems be-
cause many of their activities are concerned with transforming information from one
form into another. In addition, organizational activity (like receiving orders, reporting
and administrating) is frequently information-driven [Bond and Gasser, 1988]. Links be-
tween human organizations and computational systems are described by [Fox, 1981,
Malone and Crowston, 1994]. Fox describes an organizational structure for a distributed
system as the collection of processes (agents), communication paths and a control regime
that coordinates the whole [Fox, 1981]. Malone and Crowston discusses the influence of
coordination theory in resource allocation, management of unreliable actors, task assign-
ment and information flow management [Malone and Crowston, 1994]. Hewitt points out
that in organization lies power [Hewitt, 1991]. An elaborate study on the use of notions,
concepts, mechanisms and patterns from organizational design in Distributed Artificial
Intelligence research can be found in [Carley and Gasser, 1999].

Coordination is an essential activity in multi-agent systems, in that it permits agents
to cooperate in order to achieve common goals. Based on division of labor, agents will
perform a number of (specialized) tasks. Agents organized in a multi-agent system are
capable of performing more complex actions, when they collaborate. However, in order
to achieve common and individual goals agents need to interact in a coordinated manner.
This means that an agent should be aware not only of the actions it can perform and the

1.1. Background 3

state it is in at any moment of the execution, but also of the actions other agents can per-
form and their states. Corkill and Lander point out the necessity for coordination in large
agent-based systems [Corkill and Lander, 1998]. They describe a set of principles to ar-
gue that coordination structures will become an important aspect of effective system per-
formance. The importance of organizations can be determined by looking at the number
of agents they include, the duration of agent activities and the repetitiveness of activities.
Another principle states that when a system is composed of distributed processes, such
as agents, there is a need for coordination structures governing the interactions between
these processes.

“Intelligent Agents” is a research domain within Artificial Intelligence that has
received a great deal of attention over the past decade [Bradshaw, 1997, Weiss, 1999,
Luck et al., 2003]. The fascination with this subject may be explained by the fact that
most of the traditional Al problems (such as knowledge representation, machine learning,
planning, problem-solving and reflection) come together within this topic, see for exam-
ple [Bond and Gasser, 1988]. A lot of intelligent agents on the Internet are usually not so
clever as the term suggests. The reason for this is that a lot of classical Al problems are
not solved by the introduction of agent technology [Wooldridge and Jennings, 1998].

Several perspectives, property sets and classifications for intelligent agents
are described within the literature, see for overviews [Franklin and Graesser, 1996,
Nwana, 1996, Bradshaw, 1997, Jennings, 2000]. An example of a property that is gener-
ally associated with an intelligent agent is that they have a degree of autonomy, meaning
that an agent can follow its agenda independently of others in order to meet its objec-
tives [Wooldridge, 2002]. For that reason, an intelligent agent should be able to perceive
its environment, e.g. via sensors, and respond in a timely fashion to changes that occur
in it. Types of environments include the physical world, a user, a collection of agents and
the Internet. Furthermore, an intelligent agent should be able to take the initiative, i.e. be
pro-active, instead of simply reacting in response to its environment. Finally, an intelli-
gent agent should be able to inferact with other agents and humans in order to offer their
services and cooperate with other agents. To be able to interact with others, intelligent
agents must have the capability to communicate in one or more agent communication
languages. In order to have agents understand each other, several standardization efforts
have been carried out [FIPA, 2002d]. However, standardization of an agent communica-
tion language does not mean standardization of communication: problems at a seman-
tic and coordination level still need to be solved. Several agent models and frameworks
have been proposed within the agent literature [Franklin and Graesser, 1996]. Most of the
time, they pay particular attention to multi-agent aspects: i.e. to inter-agent/social orga-
nization and to inter-agent interaction. Some frameworks make no commitment to the
way an individual agent is organized internally; others make a commitment by impos-
ing a certain technical mechanism which implements only one or a few intelligent agent
properties [Wooldridge and Jennings, 1998].

Domains where multi-agent systems play a role are large scale problem-solving sys-
tems, comprised of multiple individuals or services, engaged in more than one task, goal-
directed (where goals can change), able to affect and be affected by their environment,
having knowledge, culture, memories, history and capabilities distinct from any single

4 Chapter 1. Introduction

agent, and having a legal standing [Bond and Gasser, 1988]. Many existing (web) services
are distributed, heterogeneous and rigid, in the sense that they can not easily be config-
ured. For example, different languages will be used for competence representations and
ontology representation [Powers, 2003]. The libraries of services (i.e. Problem-Solving
Methods) of a future Semantic Web will be as heterogeneous as the current collection
of search engines and other services that exist on the Web [Berners-Lee et al., 2001]. To
take heterogeneity and distribution into account, agent wrappers can be built around these
services, so that these services can cooperate (e.g. exchange information).

Given the possible distributive and heterogeneous nature of multi-agent systems
several design decisions have to be made. Bond and Gasser divide these decisions into
two levels: individual agent level and community level. Decisions at the level of indi-
vidual agents are: What becomes an agent in a system? How does each agent model the
world? How are agents structured internally? Are the agents identical or heterogeneous?
In addition Do the agents share common modules or differ in others? Decisions at the level
of a community are: What is the population of a system? What communication channels
do agents use? What communication protocols do agents use? How are conversations
among agents structured? How is the configuration of the agent-community? and How
do the agents coordinate their action? [Bond and Gasser, 1988]

Little has been reported on theories and methods related to complex multi-agent
architectures design. Therefore, we explore the use of existing organizational patterns as
architectures for multi-agent systems to address a selection of the above-described design
issues. In order to have agents cooperate within artificial organizations, interoperability
problems will be examined. Furthermore, we investigate how individual agents can be
analyzed and designed.

1.2 Research Questions

The general problem addressed in this book is:

HOW CAN HUMAN ORGANIZATIONAL PRINCIPLES BE USED FOR MULTI-
AGENT ARCHITECTURES?

We explore the possibilities of designing multi-agent systems as artificial organi-
zations and we investigate the problems that arise when we want agents to behave as
members within an artificial organization.

This general problem is refined by the following three research questions:

1. HOW CAN DECOMPOSITION PRINCIPLES (I.E. DIVISION OF LABOR) AND CO-
ORDINATION BE APPLIED IN MULTI-AGENT ARCHITECTURE DESIGN?

Despite the differences between intelligent agents and humans, we assume that
human organizational principles can be used in multi-agent architecture design.
Concepts, mechanisms and patterns from the field of organizational design have
already been used as the basis for distributed intelligent system design [Fox, 1981,
Corkill and Lander, 1998, Carley and Gasser, 1999]. However, little work has been

1.3. Approach 5

reported on the explicit use of the notion of organizations in distributed intelligent
system design. Moreover, Jennings argues that there are (still) insufficient mech-
anisms available for representing an agent-based system’s organizational struc-
ture [Jennings, 2000]. However, several organizational structures and mechanisms
are described within the organizational design literature. Therefore, we are inter-
ested in the use of this organizational knowledge in multi-agent architecture design.

2. HOW CAN AGENTS MAKE USE OF COORDINATION MECHANISMS?

When agents collaborate, they need to use and share coordination strategies in order
to regulate joint actions. To share coordination strategies, agents will have to be
able to share knowledge related to coordination models. Furthermore, to regulate
joint actions, agents need to interoperate with each other. Interoperability issues
are concerned with allowing agents to communicate with each other, coordinating
agent communication and adding semantics to agent communication.

3. HOW CAN THE CAPABILITIES AND FUNCTIONALITY OF AN INDIVIDUAL INTEL-
LIGENT AGENT BE ANALYZED AND DESIGNED?

This question relates to the issues discussed by Bond and Gasser: how does an
agent model the world, are the agents identical or heterogeneous and how are
the agents structured internally [Bond and Gasser, 1988]. There is a need for an
integrated model that combines typical agent intelligence properties, such as au-
tonomy, interaction, pro-activeness and reactiveness. This model should be able to
guide designers in making conceptual, functional and technical design decisions.
Such a model can take the form of a reference model for agent analysis and design
in which issues related to coordination and organization are included.

1.3 Approach

In order to answer the research questions, we follow three research lines: organizational
modeling and coordination, interoperability and agent models. In each research line, we
present conceptual frameworks that are evaluated with technical experiments using pro-
totypes. The three frameworks are described at the knowledge level: i.e. independent of
implementation and symbol representation details. Prototypes are implemented (at the
symbol level), as proof of concepts evaluating the plausibility of the presented frame-
works.
To answer the research questions, we perform the following tasks:

e CONDUCT A CONCEPTUAL ANALYSIS OF ORGANIZATIONAL CONCEPTS, ORGA-
NIZATIONAL MODELS AND COORDINATION MECHANISMS.

To set the scope of this book, we investigate the building blocks of organizational
design that form the basis of an agent organization framework. Within this frame-
work, a set of organizational structures will be discussed. A case study on supply

6 Chapter 1. Introduction

chain management is analyzed with this framework, which results in three orga-
nizational structure designs. Finally, we describe a prototype application resulting
from the three organizational designs.

e PROVIDE A FRAMEWORK FOR AGENT INTEROPERATION.

In order to have agents “smoothly” collaborate with each other, we address the
problem of enabling interoperation. We explore an interoperability framework con-
sisting of four interoperability levels: technical, syntactical, semantic and coor-
dination. The issues in the technical interoperability and syntactic interoperabil-
ity, which are solved by applying standard protocols, methods and technology, are
briefly discussed. The semantic interoperability level deals with ontologies that are
used in agent communication. We investigate how these ontologies can be con-
structed and used by agents. The coordination interoperability level deals with
how agents can be coordinated. We explore the use of Problem-Solving Methods
(PSMs) to characterize coordination strategies that can be used by agents. Work
on a multi-agent architecture capable of (semi)automatic reuse of (web) services is
discussed.

e PROVIDE A CONCEPTUAL FRAMEWORK FOR ANALYZING AND DESIGNING THE
CAPABILITIES AND FUNCTIONALITY OF AN INTELLIGENT AGENT.

We present a conceptual framework for analyzing and designing the capabilities
and functionality of an intelligent agent. Using the notion of separation of concerns,
we define five dimensions of agent intelligence where each dimension plays a role
in the development of intelligent agents. We report on two agent-based systems that
are analyzed, designed and implemented using the conceptual framework.

1.4 Outline

The book is organized according to the outline presented below:

Chapter 2 - Agent Organization Framework In this chapter, we introduce general
principles of organizational design related to decomposition principles, organiza-
tional structures and coordination mechanisms. A selection of these principles are
gathered in a framework for multi-agent system design. In order to explore the ap-
plication of the framework, a collection of organizational design steps is presented
that assists in a task-oriented decomposition of the overall task of a system into
jobs, the reintegration of jobs using job allocation, coordination mechanisms and
organizational structuring. A case study on distributed supply chain management
shows the process from task decomposition via organizational design to three ar-
chitectures of multi-agent system designs.

Chapter 3 - Coordination Strategies for Multi-Agent Systems Models for coordina-
tion strategies, introduced in Chapter 2, are translated into Problem-Solving Meth-
ods. The coordination strategies are based on existing coordination strategies taken

1.4. Outline 7

from organizational design theory and give agents a means to coordinate joint ac-
tions. We report on a small experiment in which three coordination strategies were
implemented as problem-solving methods in a multi-agent system.

Chapter 4 - Five Capabilities Model In order to study how agents can be made to op-
erate within organizations, we discuss the the 5 Capabilities (5C) model. The 5C
model is a conceptual framework for analyzing and designing the capabilities and
functionality of an intelligent agent. Using the notion of separation of concerns,
the 5C model defines five dimensions of agent intelligence, where each dimension
plays a role in the analysis and development of intelligent agents.

Chapter 5 - Interoperation within a Complex Multi-Agent Architecture The prob-
lem of interoperation within a distributed architecture composed of heterogeneous
components is discussed in this chapter. The architecture is able to compose ap-
plications from existing (web) services that reside on the Web. The agents within
the architecture collaborate using collaboration patterns and specialized ontologies,
which are part of an interoperability framework. This framework consists of four
layers: coordination (based on the mechanisms described in Chapter 2), semantical,
syntactical and technical. The collaboration patterns are operationalizations of the
coordination methods described in Chapter 3. A proof of concept is presented that
explains the dynamics of parts of the architecture. The design and use of specialized
ontologies is described in Chapter 6.

Chapter 6 - Message Content Ontologies The semantical layer of the interoperability
framework, introduced in Chapter 5, is discussed in detail in this chapter. We ad-
dress the problem of how agents handle ontology-based communication. A theo-
retical framework for ontology-based communication is introduced. A pragmatic
approach is presented that enables the creation and use of ontologies to support
ontology-based communication between agents.

Chapter 7 - Conclusions This chapter concludes the book by answering the research
questions, discussing the presented work and suggesting future research.

Chapter 2

Agent Organization Framework

In this chapter we present a framework for multi-agent system design which is based both on human organi-
zational notions and principles for distributed intelligent systems design. The framework elaborates on the
idea that notions from the field of organizational design can be used as the basis for the design of distributed
intelligent systems. Organizational notions such as task, control, job, operation, management, coordination
and organization are framed into an agent organizational framework. A collection of organizational design
activities is presented that assists in a task oriented decomposition of the overall task of a system into jobs
and the reintegration of jobs using job allocation, coordination mechanisms and organizational structuring.
A number of coordination mechanisms have been defined in the organizational design literature. For the
scope of this book we concentrate on: Direct Supervision where one individual takes all decisions for the
work of others, Mutual Adjustment that achieves coordination by a process of informal communication
between agents, and Standardization of Work, Output and Skills.
Three organizational structures are discussed, that coordinate agents and their work: Machine Bureaucracy,
Professional Bureaucracy and Adhocracy. The Machine Bureaucracy is task-driven, seeing the organization
as a single-purpose structure, which only uses one strategy to execute the overall task. The Professional
Bureaucracy is competence-driven, where a part of the organization will first examine a case, match it to
predetermined situations and then allocate specialized agents to it. In the Adhocracy the organization is
capable of reorganizing its own structure including dynamically changing the work flow, shifting respon-
sibilities and adapting to changing environments. A case study on distributed supply chain management
shows the process from task decomposition via organizational design to three multi-agent architectures
based on Mintzberg’s organizational structures. This chapter will be published in the International Journal
of Human Computer Studies [van Aart, 2004].

2.1 Introduction

In this chapter, we discuss a framework for the design of distributed intelligent sys-
tems. The framework is based on human organizational notions and principles, aimed
at managing relations between organizational agents' and the activities they perform,
rather than at the design of individual agents. The framework elaborates on the idea
that notions from the field of organizational design can be used as the basis for the

!n this book, we use “agent” to refer to intelligent software agents.

10 Chapter 2. Agent Organization Framework

design of distributed intelligent systems. Already in the eighties, links between human
organizations and computational systems were suggested [Fox, 1981, Malone, 1987].
Since then, organizational approaches have become themes in research areas for sup-
porting coordination and framing control relations. Hewitt has pointed out that in or-
ganization lies power [Hewitt, 1991]. Indeed, despite the differences? between software
agents and humans a number of notions, such as concepts, mechanisms and patterns
can be used as principles for distributed intelligent systems design [Fox, 1981]. Differ-
ent agent-oriented modeling techniques and methods have been presented, see for an
overview [Wooldridge et al., 2000]. For example, GAIA specifies agent systems in terms
of interaction roles. Roles are defined with responsibilities, permissions and protocols into
a role model. An interaction model defines a protocol for each type of inter-role interac-
tion [Wooldridge et al., 2000]. However, GAIA only implicitly uses the notion of organi-
zations and should be enhanced with organizational structures [Zambonelli et al., 2000].
Research efforts on agents and organizations have been reported in the organizational
design literature, including research on electronic institutions [Esteva et al., 2001], com-
putational and mathematical models of organizations [Carley and Gasser, 1999] and or-
ganizational views on multi-agent systems [Ferber, 1999].

In spite of the work on agent organizations, Jennings argues that there are not suffi-
cient mechanisms available for representing an agent-based system’s organizational struc-
ture [Jennings, 2000]. Fox sees an organizational structure for a distributed system as the
collection of processes (i.e. agents), communication paths and a control regime that co-
ordinates the whole [Fox, 1981]. Therefore, research efforts in the agent field have dealt
with the problem of enabling interactions among agents allowing information and knowl-
edge to be transferred from one agent to another, middleware components (mediator,
information brokers) and infrastructures. However, the approach of the research efforts
reported in the agent literature is on the system (implementation) perspective.

Distributed Artificial Intelligence (DAI) has looked at overcoming limitations of
individual agencies by tackling problems through running distributed computational pro-
cesses. For this reason, research in (distributed) knowledge models, communication and
reasoning techniques have led to ways in which agents can participate in societies of
agents, i.e. agencies. We see an agency as a society of agents, in which each of them can
be specialized with knowledge, one or more skills and has a sort of mechanism that per-
mits the interaction with others. Examples of agencies are collections of individuals, in-
cluding humans, machines and computational processes such as web services and agents.
A specific agency is a multi-agent system, which is defined by O’Hare and Jennings as
a loosely-coupled network of problems solvers (i.e. agents) that work together to solve
problems that are beyond their individual capabilities [O’Hare and Jennings, 1996]. Ev-
ery agent has one or more limitations, which can be categorized into cognitive, physical,
temporal and institutional limitations. Cognitive limitations model the fact that individ-
uals are rationally bounded. It means that the data, information, and knowledge an indi-
vidual can process and the detail of control an individual can handle is limited. As tasks

2For example, agents can be cloned but agents do not have the ability to learn as quickly as humans from
each other.

2.2. Building Blocks of Agent Organizational models 11

grow larger and more complex, techniques must be applied to limit the growth of infor-
mation and the complexity of control. Individuals can be limited physically, because of
their physiology or because of the resources available to them. Temporal limitations exist
where the achievement of individual goals exceeds the lifetime of an individual, or the
time during which resources are available for this goal. Finally, institutional limitations
means that individuals are legally or politically limited.

Social systems, i.e. groups of humans and social connections, can be viewed as com-
putational systems. Many human activities are concerned with transforming information
and knowledge from one form to another. In addition, human activities (such as receiv-
ing orders, reporting and processing) are frequently information-driven [Galbraith, 1973].
An example is an agent-based system for digital cross-border information flow within
a European network of insurance companies. In this case, agents that exchange the
same information via the Internet replaced people who exchanged information by tele-
phone [van Aart et al., 2002b]. However, when designing complex systems with multiple
agents and multiple tasks, it is likely that social rules will lead to systems that are hard
to design and maintain. If every agent is equipped with social rules prescribing the way
it should behave in the system, these rules will have to be valid in every situation. The
result can be a set of agents where the rule base for social rules is more complex than their
competences. At the moment, if a task, domain or group of agent changes, every agent
(and its social rule base) has to be adjusted.

The remainder of this chapter is organized as follows. In Section 2.2, we investigate
the building blocks from organizational design that form the basis of our framework.
Organizational structures are described in Section 2.3. Section 2.4 describes a collection
of organizational design activities that operates within the framework. In Section 2.5 a
case study on supply chain management is analyzed with the framework, which resulted
in three organizational structure designs and a small prototype application. Finally, we
discuss issues arising from this study and suggest future work.

2.2 Building Blocks of Agent Organizational models

This section discusses a number of concepts, organizational relation and coordination
mechanisms from organizational design that will be used as building blocks in our agent
organization framework. We will start by examining the work of Mintzberg. He has ar-
gued that: Every organized human activity from baking a cookie to the placing of a man
on the moon gives rise to two fundamental and opposing questions: how to divide ac-
tivities into various tasks and how to coordinate these tasks to accomplish the activ-
ity? [Mintzberg, 1993]. One of the answers Mintzberg gives to the first question is that
activities should be broken down into a technical part and a management part. Operators
will be responsible for performing the technical part of the work, such as producing out-
put. Managers will be responsible for the control over Operators. With this approach, the
performance of work is explicitly separated from the control over it.

One of the answers to the second question is to place Operators and Managers into a
(hierarchical) structure, where Managers control Operators in order to achieve coordina-

12 Chapter 2. Agent Organization Framework

tion. Another approach is to place Operators into a structure of commitments (also known
as locker room agreements), wherein the Operators have reached an agreement on how
to collaborate with each other. This means that the work and communication patterns of
Operators are standardized. Mintzberg’s breakdown of tasks into smaller activities can
be seen as hierarchical task decomposition. This means that tasks are broken down into
smaller subtasks. This breakdown repeats until the subtasks are small enough to be allo-
cated to an Operator. A stop-criterion for decomposition is the amount and complexity of
the knowledge needed for executing a subtask.

We assume that a task is known beforehand and that subtasks will not be conflicting.
Other decomposition strategies include Skill oriented , Process oriented and Knowledge
oriented decomposition. Skill oriented decomposition looks at the expertise of compo-
nents (humans, machine or agents) already available. For example, in the design of a
system that is able to search on the Web, one can utilize already existing search engines,
such as Google. Process oriented decomposition tries to define the goal of a system in
terms of transactions between steps. This can be useful in domains where the steps to be
undertaken are deterministic and the transactions between the steps can be described as
sequential. For example, in the process of assembling a car, there is an assembly line that
represents the medium for sequential transactions between the assemble jobs. Knowledge
oriented decomposition will look at the knowledge of components (humans, machine or
agents) already available. For example, in order to facilitate a one-stop shop? for law as-
sistance, a number of existing knowledge bases on the domain of law can be coupled,
by wrapping agents around them. An example of this functionality is discussed in Sec-
tion 6.5. In the remainder we will use task decomposition as mechanism for division of
labor.

Another principle from organizational design is the contingency theory (see for an
overview [Morgan, 1996]). It claims that: There is no best way to organize. This means
that there is not one organizational structure that can handle every problem in every do-
main. The theory states that the appropriate form of an organizational design depends on
the task and the environment. Tasks range from highly routine to highly innovative. For
example, the task to assemble a car can be seen as a routine task. The design of a car can
be seen as an innovative task. Environments can be characterized on a scale ranging from
relatively stable to highly unpredictable.

The next section starts from the theory of Mintzberg by describing an ontology that
can be used for Multi-Agent System analysis and design. Based on the contingency theory
we discuss several organizational forms in Section 2.3.

2.2.1 Concepts

One individual (such as person, machine, agent or web service) can handle many tasks
on its own. However, when one of these individuals encounters one or more limitations,
a solution is to have the task be executed by a set of individuals. To define what has to be
done (i.e. the decomposition of the overall task), by whom (set of Operators and task al-

3 A system where one point mediates between user and available services.

2.2. Building Blocks of Agent Organizational models 13

location) and how (methods and knowledge), a selection of concepts from organizational
literature has been placed in a context as illustrated in Figure 2.1.

- - -) N S ~
primitive primitive
task task
PR PN Piand N -
Al

-
- ~

-

~— - e D= = = =
P,

Task
e m el - o s N mm e m— = = — = - -
-, - S~o N
performf " .- - S~ A c\oordlnates
AP S
technical __controls management
activity activit:
PRAHEN PN
decomposed_in .~ RS N
-

supervise strategy
job job

\
(b
| [
| —t
| [
! : b . ~ < decomposed in
| 1 ~ | | ~
[: Lo
| [
| [
| [
| [
| [
\ /

~— e e e e e e

\ Coordination

responsible_for supervises

|
|
| reports
|
|
|
1
\

Organization

Figure 2.1

Framework context, showing the four perspectives of the framework, its concepts and
main relations. The task perspective consists of fasks and task decomposition expressed
in task relations. The operational perspective consists of objects, technical activities
and jobs. The coordination perspective is concerned with the control of technical activ-
ities in the form of management activities and jobs. The organizational perspective is
concerned with who does what (job allocation) and consists of positions (such as operator
and manager) and units.

14 Chapter 2. Agent Organization Framework

The task perspective consists of tasks and a task decomposition expressed in fask
relations. A task can be seen as the overall duty of an organization. Tasks can be defined
as work in a domain, e.g. production of cars or finding scientific literature on the Web.
In detail, a task definition specifies the subtasks that should achieve that goal of the task,
input and output specifications and a control structure. A control structure specifies a
methods to handle the dependencies between subtasks. This corresponds to Mintzberg’s
division of work into tasks. Task relations describe dependencies of these subtasks, such
as the sequence of execution. This corresponds to Mintzberg’s coordination of tasks to
accomplish the work.

The operational perspective consists of objects, technical activities and jobs. An
object is something that can be consumed, produced (created, cloned), transformed (al-
tered, combined) or used by tasks. Examples of objects are data, information and knowl-
edge. In some cases, objects can be stored in a warehouse or a repository (e.g. a database).
Technical activities deal with objects typically leading to a piece of work where objects
are consumed (used, altered, combined) and produced (created, cloned). The pieces of
work are represented by jobs. A technical activity consists of three jobs: (1) Consume
job, which secures the inputs (that is objects) for production (2) Transform job, which
transforms (or produces) the input to outputs via a transformation process and (3) Dis-
tribute job, which distributes the outputs (that is objects). Sometimes objects need to be
transported between producing and consuming jobs. For example, there can be a unit for
item discovery and a unit for item classification. The jobs Consume and Distribute are
explicitly defined to assist the process of coordination. Every agent has first to gather its
input, before it can operate on it. Then it can be distributed to one or more other agents.
The idea behind this is that these two jobs can be either passive or active. For example,
if the job Consume is passive, agent A will wait until agent B will offer its consumable
objects to Agent A. This can be seen as re-active behavior of agent A. If the job is pro-
active, agent A will take initiative to gather its input by contacting agent B that distributes
the object agent A needs. This can be seen as pro-active behavior. So called broker agents
can assist in these processes, for coupling demand (Consume) and offer (Distribute).
Interaction protocols can be applied, such as the Contract Net protocol which is based
on announcements (call for proposals), bids (proposals) and awarded contracts (accep-
tance) [Davis and Smith, 1983]. In traditional software engineering the flow of objects
are handled within the internals of a system or an inference mechanism. For example, one
does not have to design the flow of objects in the programming environment Prolog, the
internal inference mechanism will take care of this.

The coordination perspective is concerned with the control of technical activities
in the form of management activities. Management activities deal with coordinating tech-
nical activities, transport of objects and decision-making. For example, when assembling
a car there is a decision to make when to start, in what sequence the car should be assem-
bled and how objects (i.e. parts) flow between the assembly jobs. Management activities
consist of two jobs: Strategy job, which is in charge of ensuring that the organization
serves its mission in an effective way, for example by configuring technical activities.
The Supervise job supervises technical activities, by for example controlling the flow of
objects between jobs. In more complex organizations where there is a hierarchy of man-

2.2. Building Blocks of Agent Organizational models 15

agement activities, the management activity should staff this authority hierarchy. This is
what Mintzberg calls the middle line, i.e. the collection of Managers between the lower
hierarchy and the top Managers [Mintzberg, 1993].

The organizational perspective is concerned with who does what (job allocation)
and therefore consists of positions and units. A position is the characteristic and expected
(social) behavior of an organizational individual. Organizational individuals populate an
organization and are grouped into larger individual groups, such as units or departments.
The behavior of an organizational individual can be described in terms of responsibility
for carrying out a set of jobs (including objects to be consumed and produced), required
expertise, skills or competences. Examples of positions are archivist, Operator, mediator,
planner, coordinator, decision-maker, observer, executive, communicator and Manager. A
position can fulfill multiple activities or a set of positions can fulfill one activity. Positions
range from specialized by performing only one job to general (omnipotent) performing
multiple or all jobs. To make things not too complex, we distinguish between two types of
positions, OPERATORS and MANAGERS. An OPERATOR is responsible for a limited set of
technical activities. A MANAGER is responsible for management activities. The difference
between a MANAGER and an OPERATOR can be seen as the separation of control knowl-
edge and object flow between agents in distributed intelligent systems. A unit is a group
of positions that can be seen as a distinct entity within an organization [Mintzberg, 1993].
Similar concepts are agency, department, cluster, team and (sub) society. Six bases for
grouping are commonly considered: grouping by knowledge and skill, by work process
and function, by time, by output, by client and by location. At the end, the assignment of
Operators and Managers, their grouping into units, and the grouping of units into other
units can form an organization.

2.2.2 Organizational Relations

Between the concepts defined in the section above relations and dependencies exist. These
relations are defined by Mintzberg and are discussed below for relations that connect two
or more positions. The relations are also summarized in Table 2.1.

The Producer/consumer relation exists in the execution of activities, one Opera-
tor with one or more other technical activities produces objects that are to be used by
technical activities that are allocated to other Operators. Sometimes transportations (i.e.
transactions within the flow of objects) have to be performed to move objects between
Operators. The Consumer/producer relation, is present where one or more Operators
need objects that are to be produced by one or more other Operators. The distinction
between producer/consumer relations and consumer/producer relations is that if OPE-
RATOR A has a producer/consumer dependency with OPERATOR B, OPERATOR B has
a consumer/producer relation with OPERATOR A. The Common limited object relation
exists between multiple Operators when they need to access an object produced by one
Operator. In this case, the technical activities of the Operators are mutually exclusive in
the sense that they cannot be performed at the same time. For example, an Operator that
needs a long time for transforming, such as complex calculations, can lock an object.

The Report relation means that an Operator has to report to a Manager. Type of

16 Chapter 2. Agent Organization Framework

OPERATOR with MANAGER with
TECHNICAL ACTIVITIES MANAGEMENT ACTIVITIES
OPERATOR with producer consumer report
TECHNICAL ACTIVITIES consumer producer conflict
common limited object
MANAGER with command and instruct delegate
MANAGEMENT ACTIVITIES direct supervision
delegate

Table 2.1
Relations between OPERATORS and MANAGERS with technical activities and manage-
ment activities.

reports can be the beginning and the ending of an activity including the state of the pro-
duced object. The Conflict relation means that an Operator has to report to a Manager in
case of a conflict between either another Operator, another Manager or a conflict with an
object.

The Command and instruct relation means that a Manager will instruct an Ope-
rator in what manner to execute its technical activities and the moment of execution. An
instruction consists of three sub-instructions: (1) what objects to consume from what Ope-
rator(s), (2) how to transform these objects, and (3) to what Operator(s) to distribute the
transformed objects to. With the Direct supervision relation, a Manager will inform an
Operator what next job to perform after finishing a job of a technical activity. For exam-
ple, when an Operator performed a transform job, the Operator has to ask the Manager
what to do with this new object. The Manager can respond with “distribute the object to
Operator B”. In short, the Manager makes all decisions on the perspective of the jobs of
a technical activity.

The Delegation relation means that a Manager will delegate its responsibility to
either another Manager or an Operator. In case of complex activities, a hierarchy of Man-
agers can be defined that are capable of controlling on different perspectives of execution.
For example, the management activities higher in a hierarchy use another perspective of
detail than the management activities that control the operation. In a car factory, the higher
Managers will look at the number of produced cars and the demand of customers. At the
lower perspective of the organization, the Managers will control the process of manufac-
turing.

2.2.3 Coordination Mechanisms

Malone defines coordination as the operation of complex systems made up of compo-
nents [Malone and Crowston, 1994]. It is the act of managing interdependencies between
positions and activities performed to achieve goals. Mintzberg has defined the follow-
ing mechanisms that can be applied to coordinate dependencies between positions and
activities.

The first coordination mechanism, Direct Supervision achieves coordination by hav-
ing one individual take responsibility, which is taking all decisions for the work of others,

2.2. Building Blocks of Agent Organizational models 17

issuing instructions to them and monitoring their actions. This mechanism can be seen as
a pattern for one central reasoning service (i.e. the MANAGER) with several information
providing processes (i.e. OPERATORS). This form of coordination is suited when there
is a clear distinction between decision-making and operation. In Section 3.3.1 (p.50), we
discuss this coordination mechanism in detail.

The second mechanism, Standardization of Work achieves coordination by speci-
fying, i.e. programming, the content of the technical activity. The content of the activity
is specified in every step, from getting the input objects (Consume), what to do with it
(Transform) and to whom to distribute it (Distribute). For example, when installing a
gear into a car a piece of this specification will look like “take the two-inch-round-head
Philips screw and insert it into hole H1, attach this to part P2 with the lock washer L2
and hexagonal nut N1, at the same time holding....”. In distributed intelligent systems de-
sign this means a hard coded procedural program that dictates the behavior of an agent,
without any room for negotiation with other agents. In case of a conflict (for instance
exception), it will be reported to the supervisor (Manager). Standardization of output ob-
Jjects achieves coordination by only specifying the result (i.e. produced objects) of the
activities. For example, taxi drivers are not told how to drive or what route to take; they
are merely informed where to deliver their fares. This can be applied when only the con-
figuration of the outgoing objects of activities matters. For example, web servers produce
web pages in the HTML format. For the reader of those pages, it does not matter how
these pages are produced, as long as they are in the HTML format. For distributed in-
telligent system design, this means the specification of interfaces (e.g. output objects) of
agents and exchange mechanisms, like languages and ontologies. Standardization of skills
achieves coordination by only specifying what competences are needed for the activity.
For example, when two surgeons meet in an operating room to perform surgery, they
need hardly communication, by virtue of training, they know exactly what to expect of
each other [Gosselin, 1978]. When designing distributed intelligent systems, the knowl-
edge required for specific activities has to be specified and agents need to be equipped
with knowledge about the competences of other agents. By means of protocols, they can
collaborate. In Section 3.3.2 (p.55), we discuss “Standardization of Work” in detail.

Finally, Mutual Adjustment achieves coordination by a process of informal commu-
nication between positions. This means that positions are capable of solving coordination
issues by themselves. For distributed intelligent system design, this means that agents
have social abilities in the sense that they are capable of interacting and reasoning about
each others interfaces, knowledge and competences and activities to achieve, without
hardly any standardization or protocols. In Section 3.3.3 (p.59) we discuss this ‘Mutual
Adjustment” in detail.

The choice of a coordination strategy depends on a number of factors, such as the
type of environment, the type of activity and the style of organizing. For example, "stan-
dardization of technical activities” is an option when the multi-agent system needs to
operate in a stable environment where activities will not change and there is a need for
tight control over the Operators. The agents will not have to be equipped with organiza-
tional knowledge nor the ability of negotiation. "Mutual Adjustment” is an alternative,
in case of a dynamic environment where it is unknown what activities need to be per-

18 Chapter 2. Agent Organization Framework

formed. Furthermore, the type and number of agents are not known on forehand meaning
that agents themselves have to get in contact and discuss the allocation of activities and
responsibilities. Accordingly, the agents have to be capable of modeling the environment
(such as constructing a world model). Furthermore, the agents have to figure out what
overall goals (if any) to achieve.

2.3 Organizational Structures

Organizations are complex artifacts that are made by design or that have emerged over
time. A design of an organization should show flow of objects between positions and
the interrelationships between these positions. An organigram* is an often used means
to represent organizational designs [Mintzberg, 1993]. An organigram shows a picture of
the division of labor, what positions exists, how these are grouped into units (or clusters)
and how formal authority flows.

We propose to use organigrams as a mechanism for representing a distributed sys-
tem’s organizational structure in answer to the issue of the availability of insufficient
mechanisms for representing a system’s organizational structure as mentioned by Jen-
nings [Jennings, 2000]. The grouping of these agents can be shown by units. Furthermore,
the flows of authority show the responsibility of Managers in terms of the Operators they
control. Imagine a hypothetical distributed system for classification of items on the Web,
such as documents and images. This system includes specialized agents for crawling,
document classification and image classification. The organigram in Figure 2.2 shows the
collection of organizational properties for this system. Firstly, what positions exists in
the system and what agents occupy these positions. For example, the agents Crawlerl
and Crawler?2 occupy the position of WEBCRAWLER. The agents Classifierl and
Classifier2 occupy the position of DOCUMENT CLASSIFICATION AGENT Secondly,
how these agents are grouped into units, e.g. the units Operation, WebCrawling and
Classification. Thirdly, how control and coordination flows among them, e.g. the unit
Operation controls the units WebCrawling and Classification.

With the discussed organizational properties in mind, we will look at three organiza-
tional structures as described by Mintzberg [Mintzberg, 1993]. The next sections describe
these organizational structures in detail.

2.3.1 Machine Bureaucracy

The Machine Bureaucracy? is an organization where tasks are decomposed into highly
routine technical activities. The relations between technical activities are sequential,
therefore relations can be coordinated using formalized rules and regulations, based on

4Also known as organizational chart.

5The term bureaucracy was introduced by Max Weber as a technical term to describe a type of organization
where behavior is predetermined or predictable, which can be seen as “standardization” as discussed before.
The management and human resource management literature, has labeled the term “Bureaucracy” as a ’dirty
word’. In this book we refer to the technical use of “Bureaucracy”.

2.3. Organizational Structures 19

Coordination

C.E.O.
| Marketin | Operation | [oo Prannin | | Administrat |
9 Operations Manager 9 ministration
MarketingManager PlanningManager AdministrationManager
useragenti: simple search agent planner1: planning agent logger1: logging agent
useragent2: simple search agent planner2: planning agent reporter1: reporting agent
useragent3: advanced search agent
| WebCrawling | | Classification |
CrawlingManager ClassificationManager
crawler1: depth-first crawler agent classifier1: documentclassification agent
crawler2: depth-first crawler agent classifier2: documentclassification agent

crawler3: breadth-first crawler agent classifier3: imageclassification agent
crawler4: breadth-first crawler agent classifier4: imageclassification agent

Figure 2.2

Organigram of a multi-agent system for classification of items on the Web. Boxes repre-
sent units, lines represent authority structures, bold font words represent manager posi-
tions and regular font words represent agents.

the coordination mechanism of standardization of technical activities. The positions are
grouped on the basis of work processes into functional units. For example, one unit for
pre-processing, one unit for transforming and one unit for packing.

There is a centralized authority, which means that all decision-making is done cen-
trally and follows a chain of command from the top of the hierarchy to the Operators
below. Given the functional units and the centralized decision-making, the form of the hi-
erarchy of the organization is steep. The type of agents are very controllable, they do not
have many decision-making capabilities and operate in subordination. Furthermore, there
is a sharp distinction between technical positions and management positions. An example
of a Machine Bureaucracy is a steel factory [Mintzberg, 1993]. The environment is stable
and the nature of the tasks is routine and sequential, e.g. produce x products of type t.
Furthermore, the jobs are rather simple and repetitive.

2.3.2 Professional Bureaucracy

The Professional Bureaucracy is an organization were technical activities are performed
by highly skilled Operators. The nature of the jobs is highly complex, meaning that a lot
of knowledge is required for them. Therefore, the control is decentralized and depends on
internal professional standards. The positions are grouped based on skills into specialized
units. For example, one for cardiology, one for neurology and one for surgery. The form
of the organization is flat. The prime coordination mechanism is standardization of skills.
The nature of the tasks is cyclic and the environment is predictable.

To understand how a Professional Bureaucracy operates, one has to think of a set

20 Chapter 2. Agent Organization Framework

of technical activities that can be applied to predetermined situations. The skill of an
Operator is defined as the technical activities it can achieve. The idea is that Operators are
categorized, based on their skills. When a problem has to be solved, the problem will be
compared to one of the predetermined situations. From there, one or more Operators are
selected that will solve the problem. Mintzberg has associated the term pigeonholing with
this process [Mintzberg, 1993]. With this, Mintzberg means that Operators are placed into
“pigeon holes” labeled with one ore more predetermined situations. Given a problem, the
most suited Operator will be “grasped” from a “pigeon hole” on the basis of its label.

The process of pigeonholing is the responsibility of the strategy job. Given the activ-
ities to be performed, one can decompose these into technical activities and allocate these
to specialized Operators. Pigeonholing can be seen as an assessment task for Managers.
Based on the case it will decide which Operator will be assigned to it.

The difference between a Machine Bureaucracy and a Professional Bureaucracy is
the pigeonholing process. The Machine Bureaucracy is a single-purpose structure, where
Operators execute standard sequences of jobs. The Professional Bureaucracy will first
examine a case and then select an Operator for it. In machine bureaucratic organizations,
such as a car factory, Operators always perform the same job. For example, there is an
Operator that classifies documents and an Operator that classifies images. In professional
bureaucratic organizations, such as a hospital, the case of a patient will first be classified
into for example, a heart defect. Secondly, it will be coupled to an Operator with the
appropriate skills, i.e. a cardiologist.

Another difference between a Machine Bureaucracy and a Professional Bureaucracy
is how technical activities are allocated to Operators. In a Machine Bureaucracy, there
is a clear distinction between the positions that are occupied with technical activities
and the positions that are occupied with management activities. Operators only perform
technical activities and Managers are occupied with management activities. This means
that Managers interfere with the consume, transform and produce jobs of Operators. This
can be seen as management on a functional level. A Professional Bureaucracy uses the
pigeonholing process for technical activities allocation.

2.3.3 Adhocracy

The two organization forms discussed above are not capable of innovation, i.e. breaking
away from established organizational patterns. We see innovation as the ability of one or
more agents to define new technical activities for new situations. New situations are found
in dynamic and unpredictable environments. Therefore, the structure of the organization
should have great flexibility. For that reason, the organizational structure of an Adhocracy
has no hierarchical form. With the use of Mutual Adjustment the Operators are capable
of performing innovative tasks, i.e. solving problems in a sophisticated and on an ad hoc
way. Decision-making is done decentralized by multiple Managers. The prime coordi-
nation mechanism is Mutual Adjustment, which means that execution of the task relies
on agent negotiation. An example of an Adhocracy is an Internet start-up with a limited
number of employees, where the type of products and services frequently changes to find
and serve customers.

2.4. Agent Organizational Design Activities 21

The difference between an Adhocracy and the two bureaucracies is that within an
Adhocracy there is no standard set of jobs and no classification of predetermined sit-
uations. For every case, Operators within an Adhocracy have to find creative solutions
to unique problems. This has to be done using forms of negotiation on the basis of ar-
gumentation. When an Adhocracy grows older, it could reconfigure itself to a Machine
Bureaucracy or a Professional Bureaucracy.

The organizational structures Machine Bureaucracy, Professional Bureaucracy and Ad-
hocracy and their properties are summarized in Table 2.2.

Organizational Structures

Machine Professional Adhocracy

Bureaucracy Bureaucracy
environment stable predictable dynamic
task nature routine skilled innovative
activity allocation static pigeon holing innovative
form steep flat none
coordination Standardization Standardization =~ Mutual
mechanism of Technical Activities of Skills Adjustment
decision making central decentral decentral
type of agents controllable cooperational autonomous

Table 2.2
Organizational structures and their properties.

2.4 Agent Organizational Design Activities

Based on Figure 2.1, we see an organizational structure in terms of flows between agents.
These flows can be the movement of objects between Operators, commands from Man-
agers to Operators and reports from Operators to Managers. This view, the discussed or-
ganization principles and organizational design are accompanied by three organizational
design activities: Task Analysis, Operator Collaboration Design and Organizational De-
sign.

2.4.1 Task Analysis

Task Analysis is concerned with the breakdown of work into subtasks. When a subtask
is small enough to be performed by one agent, we see that as a primitive task. A primi-
tive task is specialized into a technical activity. Accompanied with this breakdown is the
identification of task dependencies. In this step, the primitive tasks are allocated to tech-
nical activities. For this step, UML activity diagrams can be used to show the technical
activities, the transform jobs of technical activities, task relations and the flow of objects.
Individual tasks can be described in terms of needed skills, task relations, input and output
objects.

22 Chapter 2. Agent Organization Framework

We use Bond and Gasser’s conceptual distances as rules for decomposi-
tion [Bond and Gasser, 1988]. Firstly, computation cost, that is the costs for using in-
formation, knowledge or drawing on a specialized skill (measured in time, space, or other
resources). For example, it is cheaper to produce cars in Asia or it is cheaper to use the
services of Google instead of building a new search engine. Secondly, spatial distance,
which can be expressed in a measure of distribution of processes, information or knowl-
edge. Both computational and human information processing depend upon sensing data,
information and knowledge. These processes occur at spatially distributed locations and
on different and therefore distributed devices. There is a (possibly large) cost involved in
moving these input data to a single central point in the system for processing. For exam-
ple, in the car factory there will be assembly lines. It is impossible to see what is going on
at the beginning and at the end of the assembly line at the same time. Another example
are web services which can be implemented differently and running on different servers.
Thirdly, temporal distance, means that data, information or knowledge may not be avail-
able at a given time, because they have not yet been produced or derived. For example,
it can take time to transport information from one point to another. Finally, semantic dis-
tance, knowledge can be clustered into specialized tasks. There is then a distance between
these specialized tasks. For example, in a car factory, one position will reason about the
number of produced cars and one position will reason about the demand of customers.
Another position will reason about the process of manufacturing, for instance sequence
of assembly, work schedules and conflict handling.

2.4.2 Operator Collaboration Design

After determining a set of technical activities, these are to be allocated to Operators. An
Operator can be specified in terms of responsibility, (expected) behavior, used interaction
strategies, and relationships with other Operators and Managers.

We assume that Operators are rationally bounded, meaning that data, information,
and knowledge an Operator can process and the detail of control it can handle is limited.
Therefore, techniques must be applied to limit the increase of information and the com-
plexity of control. For that reason, one or more of the coordination mechanisms are to
be chosen, given the nature of the task and the nature of the environment. For example,
when using direct supervision, positions must allow Managers to steer their object flows.
AUML sequence diagrams (cf. [Odell et al., 2000]) can be used to express interactions
between agents. AUML is an extension of UML for expressing concepts and mechanisms,
such as agents, interactions and protocols. An AUML sequence diagram can show pat-
terns of interaction between the agents, i.e. Operators. These interactions dictate what
control between the Operators has to be managed.

2.4.3 Organizational Design

The step Organizational Design is concerned with the definitive organizational design.
Given the collaboration model, Manager tasks have to be specified. This can be illustrated
in a control flow diagram showing the flow of control between the management activities

2.5. Agent-Based Supply Chain Management 23

and the Operators. Furthermore, it shows the sequential flow of objects. Two examples of
control flow diagrams can be found in Figure 2.6 (p.30) and Figure 2.8 (p.32).

An organizational structure can be used for the agent organizational design, given
the type of environment and the type of task. The characteristics of the organization can
be expressed as in Figure 2.2 showing the organizational positions, their grouping and the
flows of authority.

2.5 Agent-Based Supply Chain Management

Supply Chain Management (SCM) is a process where different types of distributions can
be found, both spatial and semantic. Existing retailers are now offering their products and
services online via web shops®. When a customer orders a set of products, the retailer
has to figure out how to deliver these products. Furthermore, the retailer should give an
indication of the price and the moment of delivery. In this case, a chain of stores uses
couriers to assemble orders and deliver the products to customers. Chains of stores can
include different kind of stores having heterogeneous assortments. The couriers have to
travel via multiple stores and multiple customers in an optimal route to satisfy customer
orders. The idea is not to let the couriers plan a route, but to introduce a central plan-
ning process, represented by a planner. This planner will have information about what
stores are present, what assortment the stores carry and what couriers exist. Besides that
information, it will have knowledge on one or more planning strategies operationalized
by planning algorithms. The planner will instruct couriers what to do, in terms of a route.
The problem is that the planner does not know whether a product is in the stock of a store
and what the costs are to retrieve the products from the stores. Furthermore, in spite of
the instructions of the planner, it does not know what the trip of an individual courier is,
because the courier can get stuck in traffic-jams or get in trouble with its vehicle. The
planner has to build a chain from stores to customers via couriers using real time infor-
mation. The system has to make use of legacy systems, because the stores have already
computational systems (back offices) that handle parts of their business by monitoring
sales and stocks. Finally, customers, stores, and couriers are physically distributed.

Huget has described a comparable agent-based approach to supply chain manage-
ment [Huget, 2002]. His approach focuses only on interaction protocols.

2.5.1 Task Analysis

We make use of the spatial distribution rule, because customers, stores, and couriers are
physical distributed. Furthermore, the system has to make use of legacy systems. The re-
sult of the breakdown of tasks into technical activities is illustrated in Figure 2.3. There
are four technical activities: ORDERING, PLANNING, PRODUCING and TRANS-
PORTING, which are identified in the activity diagram as swimlanes. The flow of infor-
mation and decisions begins when a customer places an order, via the job place order.
This job produces the object order that is consumed by PLANNING.

6 Acklin B.V. provided input for this case (for more information see www.acklin.nl).

24 Chapter 2. Agent Organization Framework

Ordering Planning Producing Transporting

place
order

\V4
order |-~ select
stores
—
uer -
--------- - location
H
query :
stores :
1
1
1
1
check Stock '
-
1
/L/ n
AV !
H 1
. -| price \E/
"""""""" trip
offer & -

decide
on offer

............ P>t instructions

instruct
stores

\V4
. P ~/ process process
instructions %nstructions) \tinstructions)

<.-------

Figure 2.3

Task analysis for the Agent-based Supply Chain Management case in a UML activity
diagram. The swim lanes represent what technical activities are to be done. The rounded
boxes show the transform jobs of technical activities, the square boxes show the objects
(see also Table 2.3), the straight arrowed lines show the task relations and dotted arrowed
lines show the direction of the object flow.

2.5. Agent-Based Supply Chain Management 25

The job select stores select a number of stores and consult the jobs query stores
and query couriers. The job query stores takes as input the object order and consults
a number of stores (i.e. the task PRODUCING). Based on the location of the user and
location of the selected stores, the job query couriers consults a number of couriers (i.e.
the task TRANSPORTING).

The job check stock (part of PRODUCING) consumes the object productlist, cal-
culates a price and distributes the object price to the job calculate offer (part of PLAN-
NING). Parallel to the job check stock, the job check route (part of TRANSPORT-
ING) is consulted. This job calculates for a particular courier, a trip from its current
position, via the selected store to the customer and back. The result of the calculation is
the object trip which is distributed to the job calculate offer (part of PLANNING).

After receiving the objects price and trip, the job calculate offer produces an offer,
which is distributed by the propose offer to the customer. The customer decides on the
offer via the decide on offer. When the customer accepts the offer, PLANNING will
instruct stores and couriers using the jobs instruct stores and instruct couriers and the
objects instructions.

The dependencies between the technical activities are seen as producer/consumer
relations (see Table 2.1), because of the obvious information-driven character of the work
flow. The dependencies between the tasks are described in Table 2.3.

ORDERING PLANNING PRODUCING TRANSPORTING

ORDERING - p/c for order - -

c/p for offer
PLANNING c/p for order - c/p for productlist c¢/p for location

p/c for offer p/c for price p/c for trip

PRODUCING - p/c for productlist - -

c/p for price
TRANSPORTING - p/c for location - -

c/p for trip

Table 2.3

Dependencies between the input and output objects of the technical activities as a re-
sult of the task analysis of the Agent-based Supply Chain Management case. p/C stands
for producer/consumer dependency and c/p stands for consumer/producer dependency.
These relations are reflected in the task analysis in the form of a UML activity diagram in
Fig. 2.3.

2.5.2 Operator Collaboration Design

Based on the identified technical activities, the skills of the Operators are determined.
Given the obvious spatial (i.e. customers, stores and courier are geographical distributed)
and semantic distribution (i.e. customer reason about products, stores about stocks, couri-
ers about trips and the planner about supply chains), we choose to allocate tasks to Ope-
rators in a fixed manner. This means that allocation decisions are made at design time.
Another approach is making allocation decisions at run time, meaning that agents have to

26 Chapter 2. Agent Organization Framework

decide what agents perform what tasks. Several techniques are reported including market
mechanisms, planning and voting [Bond and Gasser, 1988].

The following technical activity allocations (expressed by the symbol “—") to Ope-
rators have been made:

ORDERING +— CUSTOMER Every customer will be offered a customer agent,
which will take care of the communication with the other agents of the system.
This can be in the form of a user agent as a desktop application or as a web service.

PLANNING +— PLANNER There will be a planner agent that is wrapped around
existing planning algorithms.

PRODUCING +— STORE Every store will be equipped with a store agent that is
wrapped around the existing store information system (i.e. back office system).

TRANSPORTING +— COURIER Every courier will be assigned a courier agent,
able of tracking the whereabouts of the courier and able to present plans from the
planner agent to the courier.

The sequence diagram in Figure 2.4 shows the pattern of interactions between the
initial group of agents. Agent Interaction Protocols (AIPs) describe communication pat-
terns as an allowed sequence of messages between agents and the constraints on the con-
tent of those messages [Odell et al., 2000]. The content of the messages is defined with a
message content ontology as discussed in Section 2.5.5. The definition and use of Mes-
sage Content Ontologies are discussed in Section 6.3.

As shown in Figure 2.4, existing AIPs are placed in sequence to enable the tech-
nical activities as described above. The used AIPs are part of the Contract Net protocol
(cf. [FIPA, 2002¢]) for enabling standardization of output of work.

2.5.3 Organizational Design

We design the definitive configuration of relations between Operators for controlling the
process. This will be done by integrating Managers that are occupied with management
activities. Both Figure 2.3 and Figure 2.4 show that PLANNER has a broad responsibility,
it has to gather objects from CUSTOMERS, STORES and COURIERS. Furthermore, it has
to calculate offers within a given time limit. When the number of CUSTOMERS, STORES
and COURIERS grows, PLANNER will form a potential bottleneck for the efficiency of
the overall system.

2.5. Agent-Based Supply Chain Management 27

Customer Planner Store Courier

I
determine |'L| cfp: order !

I
: |
order T select candidate stores | :
| cfp: productlist ' retrieve I
| I . stock information !
\ . offer: price and !
| T - - T~ calculate offer !
| select candidate couriers !
| request: route !
| : K T retrieve
| b inform: trip planning
| - - - t
i acces planning algorithms | |
' propose: offer and calculate offer | |
<« T
decide | : :
on offer accept: offer | | \
T
I I
!) accept: offer g)
: instruct store g I
inform: instructions _ | |
»1] process instructions
. [. !
instruct courier inform; instructions > process
- ! U instructions
I ! '
X .
Figure 2.4

Operations design expressed in an AUML sequence diagram showing patterns of interac-
tion between the operators. Lifelines of positions are represented by the dotted lines. The
arrowed lines show interactions between the operators, which are instances of interaction
protocols. The term “cfp” stands for “Call For Proposal”.

28 Chapter 2. Agent Organization Framework

Given Table 2.2 and the claim that there is not one best way to organize, we will
look at three possible organization patterns that will cope with the information and control
complexity of the PLANNING activity. The choice of the three organizations is based on
different interpretations of the environment. If we see the environment as stable we can
apply the Machine Bureaucracy, see Section 2.5.3.1. We do not expect that there will be
any changes in terms of the number or types of stores, products and couriers. When we see
the environment as instable although predictable, we apply the Professional Bureaucracy
(cf. Section 2.5.3.2) We expect that the number of stores, products and couriers is dynamic
meaning that stores, products and couriers can enter or leave the system at any time.
However, we do not expect that the process will change. We apply the Adhocracy (cf.
Section 2.5.3.3), when the environment is unpredictable because the process may change
due to, for example, new forms of customer services where the customer can choose how
to collects its goods.

2.5.3.1 Machine Bureaucracy

As shown in Figure 2.5, several Management activities are introduced that use direct
supervision as a coordination mechanism:

CUSTOMER RELATIONS is responsible for the Operators CUSTOMER.
PLANNING is responsible for the Operators PLANNER.

STOCK is responsible for the Operators STORE.

TRANSPORT is responsible for the Operators COURIER.

CHAINING SERVICE is responsible for the units Planning and Stock.
OPERATIONS is responsible for the units Chaining Service and Transport.
C.E.O. is responsible for the units Customer Relations and Operation.

The agents are grouped into functional units, which are put in a steep hierarchy. For
example the line of authority from coordinator agent tothe planner agents
flows from the units Operations, Chaining Services to Planning.

The control flow as illustrated in Figure 2.6 shows the sequence of interactions
within the Machine Bureaucracy. The process starts with a CFP’ with an order sent
from CUSTOMER to CUSTOMERMANAGEMENT in message labeled with “1”. OPERA-
TIONSMANAGEMENT receives the order via GENERALMANAGEMENT via the messages
2 and 3. From there, OPERATIONSMANAGEMENT will query for available couriers via
TRANSPORTMANAGEMENT via messages 4,5,6 and 7. TRANSPORTMANAGEMENT will
select for every job what agents to query. As shown, every Operator has to report to the
unit’s Manager. Given the object trips the position CHAININGMANAGEMENT will query
STORES for prices given a productlist via the messages 9,10,11 and 12. Then PLANNER

7CFP stands for Call For Proposal.

2.5. Agent-Based Supply Chain Management 29

C.E.O
CoordinatorAgent

it
\4 A4

Customer Relations Operations
OperationsManager
CustomerRelationsManager AlA
ustomerAgent001 f|] L4
ustomerAgent002 Chaining services
ustomerAgent003 Chaini?'ngManager Transport
ustomerAgent004
!l A TransportManager
| | CourierAgent001
A 4 y CourierAgent002
Planning Stock CourierAgent003
PlannerManager StoreManager
PlannerAgent StoreAgent001
StoreAgent002
Figure 2.5

Organigram of the supply chain management organization as a Machine Bureaucracy,
where boxes represent units, lines represent authority structures, bold font words repre-
sent management positions and regular font words represent operational positions. The
black arrowed lines represent control and the grey arrowed lines represent Standardiza-
tion of Output.

will be instructed to construct a chain via the messages 13 and 14. The chain will be
reported to CUSTOMER via the messages 15,16,17,18,19 and 20. Then CUSTOMER can
choose to refuse or accept the offer. In case of acceptance, STORES will be instructed via
the messages 23,24,25 and 26. COURIERS will be instructed via the messages 23, 27 and
28.

The technical activities are seen as highly routine operating jobs, therefore the type
of agents has to be very controllable and will not need to do much decision-making. Fur-
thermore, the nature of the flow of objects is seen as sequential. There is a sharp distinc-
tion between technical positions and management positions. For example, the manage-
ment positions COORDINATORAGENT, OPERATIONSMANAGER and CHAININGMAN-
AGER only control other units being in charge of making the decisions for this units. For
example, the planner does not have to know how the store and courier agents return their
real time information. Figure 2.5 illustrates the resulting agents, grouping and the author-
ity structure of the agent organization with the COORDINATOR AGENT as the C.E.O. of
the system.

30 Chapter 2. Agent Organization Framework

General Management

2:cfp:order
22:accept chain 19:propose
chain

3:cfp:order 18:propose chain
| CustomerManagement | 28:accept chain
1 :cfp:order/I\ 20:propose offer
21:accept offer
| OperationsManagement |
| Customer | 8:request chain,

given trips
24:request chai

4:request routes

7:inform trips
27:inform instructions

17:inform chain,
with instructions

| ChainingManagement |

TransportManagement |

9:cfp productlists 5:request route

: B . i 6:inform tri
13:request chain, 16: inform chain 12:propose prices 28:inform instructions T P

given trips and prices 25:request
productlist

Courier |

| PlannerManagement | | StoreManagement | |

14:request chain, 10:cfp productlist .
given trips and prices 15: inform chain 26:request 11:propose price
productlist

| Planner | | Store |

Figure 2.6
Flow of control within the Machine Bureaucracy, showing the sequence of messages,
their intention and content.

2.5.3.2 Professional Bureaucracy

When applying the Professional Bureaucracy as organizational structure, we see the na-
ture of the environment as dynamic but predictable. The nature is dynamic in the terms
of the come and go of existing and new stores, products and couriers. The nature is pre-
dictable, when we assume that these processes will not change. For that reason, the system
has to be able to handle a dynamic number of agents. For this, management activities are
equipped with skills for determining the number and type of available agents. For exam-
ple, when the PLANNER is to query available STORES, the system has to determine which
STORES are available.

Figure 2.7 shows the organigram of the Professional Bureaucracy. The form of the
organization can be seen as flat, because the positions are grouped on basis of skills into
specialized units. The units reflect the distribution of already existing competences, i.e.
the backoffice systems of the involved parties. The unit ChainingServices is designed
around the existing planning algorithms, the unit Stock is designed around the computa-

2.5. Agent-Based Supply Chain Management 31

C.E.O
CoordinatorAgent

Customer Relations | Chaining services | | Stock | | Transport
ustomerManager PlannerManager StoreManager TransportManager
ustomerAgent001 PlannerAgent001 StoreAgent001 CourierAgent001
ustomerAgent002 StoreAgent002 CourierAgent002
ustomerAgent003 CourierAgent003

ustomerAgent004

Figure 2.7

Organigram of the supply chain management organization as a Professional Bureaucracy,
where boxes represent units, lines represent authority structures, bold font words repre-
sent management positions and regular font words represent operational positions. The
black lines represent control and the grey arrowed lines represent Standardization of Out-
put.

tional systems of the stores and the unit Transport is designed around the computational
systems of the couriers. To coordinate the flows between the units, we have chosen “’stan-
dardization of skills” as prime coordination mechanism.

The control flow as illustrated in Figure 2.8 shows the sequence of communication.
It starts with a CFP containing an order sent from CUSTOMER to PLANNERMANAGE-
MENT in message 1. PLANNERMANAGEMENT will select a PLANNER using the “pi-
geonholing” principle, which is a selection from a set of available planners, and sends
the order in message 2. The planner will query STORES and COURIERS via STORE-
MANAGER and TRANSPORTMANAGER. The STOREMANAGER will select a store and
TRANSPORTMANAGER will select a courier both using the pigeonhole principle. The
query process is illustrated in the messages 3,4,5,6,7 and 8. After acceptance of a pro-
posed chain via the messages 9 and 10 the planner will instruct the STORE and COURIER
via the messages 11 and 12.

An alternative approach using the Professional Bureaucracy as organizational pat-
tern is when every store has its own transport service. The PLANNER will only have to
contact STORES to ask for price offers. These price offers will include the costs related
to transport. of the products. The STORES will determine what COURIERS to contract. In
this scenario, a part of responsibility of the PLANNER is given to STORES. The advantage
is that every STORE can apply its own strategy to compile its offer. Furthermore, STORES
will have more control over how goods are transported from stores to customers.

32 Chapter 2. Agent Organization Framework

General Management

StoreManagement |

4:cfp productlist\L

5:propose; Store |

1:request
productlist
6:request routs

z TransportManagement

12:inform
10:accept offer [nstructions 7:request
route
8:inform trip

3:cfp productlist

| CustomerManagement PlannerManagement |

1:cfp:order,
2:cfp:order
9:propose

offer

| Customer Planner

Figure 2.8
Flow of control within the Professional Bureaucracy, showing the sequence of messages,
their intention and content.

2.5.3.3 Adhocracy

The agents within an Adhocracy use Mutual Adjustment as a coordination mechanism
to determine what has to be done and by whom. For this every agent has to be able
to communicate with other agents. Therefore, there is no clear organizational structure.
Furthermore, decision-making is performed decentrally by individual agents.

The knowledge required for solving the problem is distributed over the in-
dividual agents. For example, the customeragent has knowledge about avail-
able courieragents and courieragents have knowledge about available
storeagents.

The method used to coordinate the agent-based supply chain system is having every
agent distributing its output to all available agents. The idea is that if an agent receives an
object that it can consume, the agents will do so, transform the object and distribute the
object to all other available agents.

We did not draw a control flow diagram for the Adhocracy because we can-
not design the flow of communication a priori. Still we can illustrate a possi-
ble communication path. Suppose CustomerAgent002 has as goal to get an or-
der delivered for a customer. For that, CustomerAgent002 will first try to find
an agent that is cable of handling an order. In this scenario, we assume that
CustomerAgent002 already knows that CourierAgent001 is able of han-
dling orders. As shown in Figure 2.9,CustomerAgent002 send a CFP (message
1) to CourierAgent001. To determine a price, CourierAgent001 contacts
StoreAgent001 and StoreAgent 002 with messages 2 and 3 to queries for prices.
The storeagents propose a price in messages 4 and 5. Next, CourierAgent001 pro-

2.5. Agent-Based Supply Chain Management 33

poses to CustomerAgent002 in message 6 to take care of the order given price.
CustomerAgent002 agrees under the condition that it will be delivered within two
hours (message 7). CourierAgent001 agrees with this condition and rises the price
(message 8). CustomerAgent002 gives CourierAgent001 the order to deliver
order by agreeing (message 9) on the offer. Finally, CourierAgent001 notifies
StoreAgent 002 that it accepts the price.

CustomerAgent002 CourierAgent001 StoreAgent001 StoreAgent002
T T T

1: cfp("order") 1
2: cfp("productlist")

3: cfp("productlist"
4: propose("price”) |

6: offer("price") 5: propose("price")

7: accept("condition")

8: offer("new price")

9: accept

|
1
|
|
1
10: accept ;
. []

- [i{‘l_.‘}g‘ I iy

Figure 2.9
A flow of control within of a possible scenario of the Adhocracy, showing the sequence
of messages, their intention and content.

2.5.4 Implementation

We implemented three small multi-agent systems based on the Machine Bureaucracy,
Professional Bureaucracy and Adhocracy designs as discussed above. In these systems,
we see positions as intelligent software agents that are relatively independent and have re-
sponsive and pro-active behaviors. The behavior of an agent can be seen from the outside
as information-processing and interacting in structured communication networks. This
behavior is implemented as:

e Select a message from the mailbox. In order to determine the priority of the mes-
sage, the agents use processing rules. These priority methods are based on queuing
techniques such as FIFO or based on the organizational position of the sender

e Process message, that is to carry out the jobs that are triggered by the content of a
received message. For example, calculating, reasoning or searching.

o Generate new instances of jobs based on the agenda of the agent.

34 Chapter 2. Agent Organization Framework

e Send communication to other agents via mailboxes. The agents can send messages
to Operators and Manager containing commands or reports. Sending a message
from one agent to another technically means that the sending agent adds a record
via an agent platform to the mailbox database of the receiving agent.

The agents are implemented as JAVA-thread objects on top of the JADE toolkit that
satisfies the behavior as described above. This means that every agent is a separate com-
putational process with its own internal control and a mailbox. Agents can communicate
asynchronously using each other’s mailboxes. This method is called communication with
asynchronous mailbox semantics [Schmidt et al., 2000]. The mailboxes are implemented
as databases with records representing incoming messages. Besides that, all variables that
represent the state of an agent are also stored in a model state database.

NECIEE

Relatonship| V| C[&/ % {[< Order Qype~:STANDARD-CLASS) c|x]
() THING A | Name Documentation Constri
©-(C) SYSTEM-CLASS A |Order |
© (C) Concept A :
{Ciorder | Rote
() Customer 7 :
(€) Productlist |C"“"5"!'-e "|
@Pﬂce ' Template Slots
(€ Route i !
(S Trip Name | Twe | cardinaliy | Other F
(S Offer | IS] orderid Integer single
() Instructions | 5] orderiine Instance required multiple classes={Orderline}
(S Product | |8] customerid Integer single
(€)1 Chain i
(C) Orderline
® (C)Action A
(C) CallForProposal
(CiPropose
(C) AcceptProposal
(€) RejectProposal

A W bbb ac ks e e

Figure 2.10

Message Content Ontology design showing Concepts and Actions. We refer to Sec-
tion 6.3 (p.142) for a definition of message content ontologies and to Section 6.4 (p.158)
for the use of message content ontologies.

2.5. Agent-Based Supply Chain Management 35

To process the content of a message, such as in Figure 2.11, the agent has to have
knowledge about how to handle messages. Concepts such as Order, Price and Offer are
standardized in a message content ontology (message content ontologies are defined in
Section 6.3 and their use is explained in Section 6.4). The ontology used in this appli-
cation is shown in Figure 2.10. The concepts AgentActions, such as CallForProposal,
Propose and AcceptProposal are used to give intentions to messages. Every AgentAc-
tion is connected to one or more processing rules. For example, a processing rule for the
agent PlannerAgent can start the job Planning after receiving a message of the type
REQUEST. The job planning will produce a set of outgoing messages and change the
internal state of the agent, including new message templates. For example, when sending
a REQUEST message to agent A, a processing rule will be instantiated that will listen
to messages received from agent B. After triggering, the appropriate actions will be
undertaken.

(CFP

:sender (agent-identifier :name Customer)

:receiver (set (agent-identifier :name CustomerManager))
rencoding String

:language <?xml version ="1.0"?>

rontology www.acklin.nl/Supermarket/SupplyChainOntology.xsd
:content
<order 1id="1569244107" customerid="6315178">
<orderline product="product001l" quantity="1" />
<orderline product="product004" quantity="2" />
<orderline product="product015" quantity="1" />
</order>
:protocol FIPA CONTRACT-NET
:conversation-id Regl008770622742
:reply-with Reql008770622742

Figure 2.11

Example ACL Message, which represents a Call For Proposal (CFP) message part of
the FIPA Contract-Net protocol, sent from CustomerAgent to CustomerManager
containing a request for proposal of an order.

The experiments were run on three separate test machines. One machine for serving
a customer with one customer agent, i.e. customer. The second machine acted as agent
platform server together with one planner agent, i.e. planner. The third machine was
equipped with three store agents, i.e. store001, store002 and store003, and three
courier agent, i.e. courier001, courier002 and courier003. The machines were
connected with each other in a LAN.

36 Chapter 2. Agent Organization Framework

Organizational Parameter

structure Production Costs ~ Coordination Costs
Machine Bureaucracy 09s 39
Professional Bureaucracy 05s 17
Adhocracy 0.6s 30

Table 2.4

Comparison between organizational structures. The “Productions Costs” are expressed in
seconds (i.e. the duration of the operation). The “Coordination Costs” are expressed by
the number of messages sent within the operation.

2.5.5 Results

The results of the experiments with the three designs can be inspected graphically using
the Agent Organization Console, see Figure 2.12 (p.39), Figure 2.13 (p.40) and Fig-
ure 2.14 (p.41). This tool draws special purpose “pseudo interaction diagrams” on the
basis of communication logs of the involved agents. This means that every agents writes
its communication to a central database, see also Section 5.5.4 (p.126). The ellipses show
agents and the arrowed lines show flow of messages between agents. The labels represent
type of message and an object as configuration. For example in Figure 2.12, the label “1:
cfp(order)” corresponds with the ACLMessage in Fig. 2.11.

We compared the three runs based on two types of costs for organizational struc-
tures (cf. [Malone, 1987]). Firstly, production costs, the costs of production and the costs
of delay in processing. In our experiments, we interpreted this rule as the difference be-
tween the end of the process and the beginning of the process. Secondly, the costs of
maintaining communication paths and the costs of exchanging messages along the paths,
i.e. the coordination costs. We interpreted this rule as counting the number of messages
sent.

Table 2.4 shows the comparison between the organizational structures. The number
of message sent for one customer order with the Professional Bureaucracy (17 messages)
is less then in the Machine Bureaucracy (39 messages). The reason for this is that the
agents within the Professional Bureaucracy have more knowledge about the process. It
makes the agents more independent and flexible. For example, if we want to add another
technical activity to the system to enrich the process, we only have to adjust a limited set
of agents. In the Machine Bureaucracy a large part of the machinery has to be adjusted.

For a designer or maintainer of the Professional Bureaucracy system, processes and
flow of objects are less controllable and predictable than in the Machine Bureaucracy sys-
tem. If something goes wrong, it is harder to track the source of a problem. Furthermore,
it is also difficult to determine the state of the system at a given time. Possible stores,
i.e. the ones that will pay for the system, will want to have a feeling of control over the
system. A possible extension of the system is a logger or reporting agent.

The number of messages (i.e. 30) sent in the Adhocracy are justified by the fact that
in the start of the process customer and planner001 send a CFP to every known

2.6. Discussion 37

agent in order to locate agents that can fulfill some service. Another way to locate an agent
is to contact a broker. This structure can be useful when the number and type of agents
are not known on forehand. However, one can never be sure whether the system will
reach its intended goal. For a designer or maintainer of the system, processes and flow of
objects are very uncontrollable and unpredictable. The agents have to be equipped with a
large knowledge base containing knowledge about communication languages, negotiation
strategies and interaction protocols. When the type of objects, agents and tasks are not
known at design time, the agents should also be equipped with learning abilities.
Although the time measurements are influenced by available network bandwidth
and running of other experiments on the test machines, the Professional Bureaucracy
turned out to be the fastest organization. This can be explained by the fact that there
is no management overhead as in the Machine Bureaucracy. Both the agents within the
Adhocracy and the Professional Bureaucracy have knowledge about others agents.

2.6 Discussion

The goal of this chapter is to get insights in the application of human organizational prin-
ciples in distributed intelligent system design. We discussed a collection of organizational
concepts, organizational models and coordination mechanisms. As argued by Jennings,
organizational relationships need to be explicitly represented [Jennings, 2000]. Therefore,
“Organigrams” have been used as a mechanism for representing a system’s organizational
structure. This resulted in an agent organization framework with four perspectives: task,
operation, coordination and organization. Furthermore, a collection of organizational de-
sign steps was presented containing three steps: process analysis, operation design and
organizational design. The steps assist in the decomposition of the overall task of a sys-
tem into jobs and the reintegration of the jobs into the overall task using job allocation,
organizational structuring and coordination mechanisms.

The case study presented in this chapter, showed that the repetitive nature of the
tasks allowed the relations between agents to be identified only once. A reason for this
is that supply chain management can be seen as information-driven, due to its repetitive
nature. In the prototypes, we implemented Direct Supervision, Standardization of Out-
put and Mutual Adjustment. Furthermore, the Agent Organization Console showed that
the progress of the organization can be monitored by tracing the flow of objects within
messages.

If we see supply chain management as competence-driven, i.e. the process relies on
the problem-solving skills that agents have, other organizational structures and coordina-
tion mechanisms can be applied. With the pigeonholing process, the competences of the
agents can be categorized and mapped on a categorization of predetermined situations.
The pigeonholing process is the main difference between Professional Bureaucracy and
Machine Bureaucracy. A Machine Bureaucracy is task-driven, i.e. the organization is a
single-purpose structure, which executes only one standard sequence of jobs. Whereas
the Professional Bureaucracy is competence-driven, i.e. a part of the organization will
first examine a case, match it to predetermined situations and then allocate an Opera-

38 Chapter 2. Agent Organization Framework

tor with a standard set of jobs to it. Using one or more of the coordination mechanisms
presented in Section 2.2.3 the agents can choose a strategy, which can lead to more inter-
esting solutions to complex problems. For example, if standardization of output, in terms
of standardized ontologies and languages, fails for some reason, it could be resolved by
giving one ore more agents the ability of failure detection and failure resolution.

The difference between an Adhocracy and the two Bureaucracies is that within an
Adhocracy, agents have to find creative solutions to unique problems using forms of ne-
gotiation such as argumentation. In an Adhocracy, the agents should be capable of reorga-
nizing their own organization including dynamically changing the flow of objects, shift-
ing responsibilities and adapting to changing environments. For this reason, the agents
should have a notion of the environment, abilities to determine the overall tasks, and have
knowledge to reason about the actions they can perform.

The work presented in this chapter showed that notions from organizational de-
sign such as task, job, position, direct supervision and standardization can be used in the
design of distributed intelligent systems. A more formal approach subject issue for fu-
ture research. Furthermore, coordination can be handled by various methods, leading to
different organizational structures. Finally, organigrams can support the visualization of
organizational structures, by showing the agent staff, the grouping of the agents and the
authority structure that connects the units and individual agents. However, organigrams
only represent a static perspective on an organization and only suggest a coordination
strategy. Together with diagrams in UML and AUML, it could form the basis of a graph-
ical distributed intelligent systems modeling language.

Future research includes extensions to the existing framework, which should be
of assistance in the organizational design decision process to bring coherence between
the goals or purposes for which the organization exists, the patterns of division of labor,
patterns of coordination, and the agents that performs the jobs. The extensions should
help designers to address more precisely an organization’s overall task and environment.
One of the extensions will address technology to be utilized, for example, technology as
described by FIPA (agent standardization), the grid (peer-to-peer computing) and the se-
mantic web (service discovery and composition). When using FIPA standards, our method
should be compliant with models and technology that draw on interaction protocols and
agent services, such as white, yellow and blue pages.

Many web services (which can be seen as agent-based service) are available. How-
ever, the notion of negotiation has only recently begun to be an issue of research in the
semantic web community. Moreover, web services tend to follow the classic client/server
model, where web services behave as servers and will only answer to a client directly. In
an agent setting, an agent service can be configured to give its answer to another agent
service, which leads to a chain of services.

In the end, the framework should assist in the formalization of the overall behavior
of a distributed intelligent system in terms of organizational structure and organization
behavior. Predictable and controllable behavior of agents will lead to reduction in the
variability of systems. Furthermore, agents in an organizational setting should have means
(e.g. methods, procedures and knowledge) to handle uncertainty and unpredictable events

2.6. Discussion 39

B TE \ 25
I8

0

12: reques

39
transportmanager
38 informid

T —
, i
- g 2
§ ‘u 3 .5-
_E- B & L,
12 z ‘-l.
D 3 y .
=] K
8 b
s : =
5 2 3
g 4 ’ ;]
=] s 3 &
» a -
i
H bid
- : i %
E 4 : 2
=y
g
-
3
2

quesip
16 props

chamingmanager
et 31

13: efplp

_omlgu..rmlﬂmcm bureaucracy
@Hmrﬁ statistics | 4, contral |
30
toecI02

File Agents Tools Help

X8 Agent Omanization Console

Figure 2.12

Screenshot of the Agent Organization Console that shows a part of a special purpose
Pseudo Interaction Diagram for the supply chain scenario with the Machine Bureaucracy
design. The ellipses represent agents and the arrowed lines represent flow of messages
between agents. The labels represent the type of message and an object as configuration.
For example, the label “1: cfp(order)” corresponds with the ACLMessage in Fig. 2.11

(p-35).

40 Chapter 2. Agent Organization Framework

9: propose(pree)
=

12: reque stiroute)

1~
8: proposeiprice)

zoo milﬂﬂ!‘

15: prop

5: efp(productlist) 0: efp(productlist)

period from 120021211 14_-12::l - im[zonzun 14:15;4 = |

E
3

¥
<N
4: efplproductlist)

configu ration| professional bureaucracy

File Agents Tools Help

Figure 2.13
Part of special purpose Pseudo Interaction Diagram for the supply chain scenario with the
Professional Bureaucracy design.

41

2.6. Discussion

oKy o (sspaoklyo o | (wpackiy
prpondsd
_ %O0HUOST | A DDSTHE LIZIZO0Z A [00TZH) 1IZIZ0Z| wol poised
o402 *J2 | sousyers B | uonossa 15 |
e _ ;uaboinToﬁL:m_Eou
disH siool susfy a4
_ﬂ|ﬂ] BI08UD UOREZIUERI0 JUahY -3

Figure 2.14

Part of special purpose Pseudo Interaction Diagram for the supply chain scenario with the

Adhocracy design.

Chapter 3

Coordination Strategies for
Multi-Agent Systems

In this chapter, we elaborate on the coordination perspectives of the organizational framework, introduced
in Section 2.2.1 (p.12). The operational perspective is concerned with modeling technical activities per-
formed by Operators. The coordination perspective is concerned with modeling coordination over these
technical activities. In order to assist Managers in reasoning about coordination, strategies are represented
in the form of problem-solving methods. Agents that need coordination, can agree to commit to one or more
coordination strategies. Underlying the problem-solving methods is a coordination ontology that models the
concepts and relationships describing the coordination domain. The coordination strategies are based on ex-
isting strategies, which were introduced in Section 2.2.3 (p.16). We report on a small experiment in which
three coordination strategies were implemented as problem-solving methods in a multi-agent system.

The outcome of the experiment gives us observations concerning the appropriate use of coordination strate-
gies. These observations are based on efficiency (the costs of communication and process time) and com-
parison between the strategies.

3.1 Introduction

In the organizational framework, introduced in Section 2.2.1 (p.12), we have defined four
perspectives: task, operational, coordination and organizational. In this chapter, we focus
on the coordination perspective, which is concerned with the control of the (technical)
activities and the regulation of object flows from the operational perspective. In order
to elaborate on coordination, we discuss a “common sense” definition for coordination:
Coordination is the act of working together harmoniously [Malone and Crowston, 1993].
If we extend this definition to include agents, an interpretation of this definition can be,
that the act of working implies that agents perform activities. Activities need input to pro-
duce objects. The activities are performed in order to achieve a task, i.e. a specification of
the work to be done. Together refers to the fact that there are interdependencies between
activities. An example of interdependency is the consumer/producer relation, see Sec-
tion 2.2.2 (p.15). Harmoniously implies that relations between different activities have to

44 Chapter 3. Coordination Strategies for Multi-Agent Systems

be managed.

There are two common approaches to coordination in multi-agent systems, implicit
and explicit. In implicit coordination, agents share common models of coordination and
there is no explicit communication related to coordination activities. Every agent main-
tains internal models (e.g. goals, state and strategy) of all other agents. However there are
various reasons why this is not feasible. One might think of all administrative activities
agents need to perform in order to acquire information (e.g. state and locations) about
other agents. These activities could lead to overloading the network in which the agents
operate. Furthermore, these activities could be more demanding than the goals the agents
are supposed to achieve.

In explicit coordination, there is an explicit “Manager” and “Operator” role, where
Managers and Operators agents explicitly communicate information related to coordi-
nation. For example, there could be agents that control other agents by sending them
instructions. These controlling agents (i.e. Managers) make use of a coordination strat-
egy. A coordination strategy can be seen as a pattern of decision-making and com-
munication among a set of agents that perform activities to coordinate task execu-
tion [Malone and Crowston, 1994]. The idea is that the controlling agents choose a co-
ordination strategy and then coordinate other agents.

Several coordination strategies are available in the literature. Mintzberg has de-
scribed coordination strategies that can be found in Machine and Professional Bureau-
cracies and Adhocracies [Mintzberg, 1993], see also Section 2.3. These strategies are:
Direct Supervision where one individual takes all decisions for the work of others, Mutual
Adjustment that achieves coordination by a process of informal communication between
agents, and Standardization of Activity, Output and Skills. The problem is that these coor-
dination strategies are described informally. Therefore, in their original form, they cannot
be used in multi-agents system.

There are several ways to model coordination methods and strategies. For an
overview of coordination modeling approaches, we refer to [Ossowski, 1999]. In this
book, several semi-formal and formal approaches are described, including coordination
as the basis for optimization problems, computational games and social laws. However,
most of these approaches are implicit coordination methods. Furthermore, these methods
cannot be easily shared and reused by other agents. The reason for this is that most re-
search on coordination in DAI has not taken into account that agents within a multi-agent
system are inherently heterogeneous [Wooldridge and Jennings, 1998]. This means that
the same engineers do not necessarily build all the agents participating in a multi-agent
system. Therefore, the behaviors of these agents differ and are not built for the same
purpose.

The focus of this work is how to model explicit coordination strategies in such a way
that they can be shared and used by agents. These coordination strategies are of interest to
agent engineers, because they can be used to control agents within a multi-agent system.
If coordination patterns are stored in libraries, agent engineers can model agent behaviors
according to these coordination patterns. In addition, Managers can be equipped with
knowledge to select a coordination strategy and to reason about it. Furthermore, a group
of agents could negotiate about which coordination strategy to apply.

3.2. Coordination as Problem-Solving 45

As suggested in Section 2.4, there are three basic organization design steps: Task
Analysis, Operator Collaboration Design and Organizational Design. Task analysis is
concerned with the breakdown of work into subtasks that can be defined as (technical)
activities. These activities can be performed by Operators. In order to let the Operators
collaborate, coordination patterns can be applied that steer interactions between Opera-
tors and control the flow of objects between Operators. Finally, organizational design is
concerned with the design of the organizational structure including the definition of man-
agement tasks.

In Section 3.2, we discuss the representation of coordination in a reusable and
sharable format. Three coordination strategies are modeled and presented in Section 3.3.
A possible alternative to design agents according to our approach is outlined in Sec-
tion 3.4. In Section 3.5 we report on small experiments in which three coordination strate-
gies were implemented as problem-solving methods in a multi-agent system.

3.2 Coordination as Problem-Solving

One way to represent coordination is in the form of Problem-Solving Methods (PSMs).
Problem-solving methods describe the reasoning process of a knowledge based system,
that can be thought of as an agent, in an implementation-and-domain independent man-
ner [Benjamins and Fensel, 1998]. We use PSMs to characterize inference steps that need
to be carried out in order to achieve coordination, and a control structure, that specifies
the order of these inference steps. The operationalizations of coordination strategies are
represented as PSMs, so that they can be shared and reused amongst different agents
(cf. [Schreiber et al., 1999]).

To provide semantics to the PSMs we make use of a number of ontologies. On-
tologies represent a shared and agreed upon abstraction of the domain of interest, rep-
resented in an explicit and machine-readable way [Studer et al., 1998]. In open environ-
ments, agents are able to join the interactions with no prior knowledge of other agents’
internal states or of the strategies used to achieve coordination. By modeling coordina-
tion information in an ontology, we make this information explicit and sharable. One of
the requirements for an agent joining the interactions is to commit to the shared infor-
mation in the ontology. This information can be stored in a task-method ontology, which
can be used for exchanging method independent concepts and relations for a particular
set of tasks (goals) [Benjamins et al., 1998]. For example, a task ontology for diagnosis
contains terms such as hypotheses, symptoms and observations.

We first model the coordination as a knowledge intensive task. Next, we model a
task-method ontology, based on an interpretation of coordination.

3.2.1 Coordination Task

In our approach, coordination is seen as a knowledge intensive task, that we call the co-
ordination task (Figure 3.1). The coordination task is concerned with how agents perform

46 Chapter 3. Coordination Strategies for Multi-Agent Systems

joint actions. The idea is that knowledge required by agents for coordination is indepen-
dent of the actual operation. To make the separation between operation and coordination,
we use the notion of Manager and Operator, as introduced in Section 2.2. The Manager
is responsible for organizing agent relations, such as those described in Section 2.2.2,
through a chosen coordination strategy. The Operator is only concerned with performing
the actions that are instructed by the Manager. Furthermore, we make use of the notion
of a Requester Agent. The Requester is an agent that delivers the task and input objects’.
The results of the execution will be given to the Requester.

task coordination is-a management-task;
goal : “manage interdependencies between the activities between operators
in order to satisfy system’s goal”;
roles :
input : operators, system-task;
output : instructions;
end task coordination;

Figure 3.1

Task specification for coordination in terms of goal and input and output roles.
The syntax used is the CommonKADS Knowledge-Model Language as defined
in [Schreiber et al., 1999].

The communication lines between agents, objects and agents involved are illustrated
in Figure 3.2, in order to illustrate the context of coordination. This figure can be read as
follows: the coordination process starts when the Requester agent sends a task to the
Manager. The Manager translates the fask into a set of instructions by selecting sub-
tasks® from task. These instructions define collaborations that manage interdependencies
between activities. The instructions are represented by activities or procedures
that specify what agent (Manager or Operator) provides input-objects, what activities to
perform and to what agent to the input-objects should be distributed.

Instructions will first be delegated to the Operators. Secondly, the Operators start the
execution by asking input from the Requester. Then, the Operators perform the activities,
instructed by the Manager. After execution, one of the Operators reports to the Manager.
Finally, the Manager reports the results to the Requester.

Several methods (i.e. coordination strategies in the form of PSMs) can be applied
to execute the coordination task. Before modeling these PSMs, we discuss a task-method
ontology that provides semantics to the concepts and relations used in the task specifica-
tion.

! An object can contain a primitive data-entity or a collection of other objects.
2Here we use sub-task to denote a piece of work that an Operator can perform, i.e. a primitive task. Primitive
Task is defined in Section 2.2.1 (p.12).

3.2. Coordination as Problem-Solving 47

task coordination
=K manager strategy
A Ty
requ@ﬂ object

coordination

operation \/
object object
Figure 3.2

Context of Coordination in a pseudo collaboration diagram. Ellipses represent agents and
the rectangles represent concepts. The arrowed lines represent communication lines. The
Requester is an agent that sends a task to the Manager. The Manager will decom-
pose the task and selects a coordination strategy to instruct available Operators. The
Operators receive input objects from the Requester. The Operators exchange objects
amongst each other. The Operators report to the Manager, which reports to the Re-
quester.

instruction report

3.2.2 Task-Method Ontology

In order to provide semantics to the coordination task, a task-method ontology has been
constructed. A graphical model of parts of the ontology is shown in Figure 3.3. The ontol-
ogy described here is semi-formal and is intended as a first version that has to be extended
and formalized.

The three central concepts in the coordination task-method ontology are task, ope-
rator and instruction. The task represents the overall task of the system that has to be
coordinated. Here, we semi-formally describe the task as a sequence of activities that have
to be performed by a set of Operators. In Chapter 5, we elaborate on the specification of
tasks and how they can be put together.

Activities need input-object to produce output-objects. The concept Operator
represents the set of available Operators. It describes the physical address of the Opera-
tor (e.g. agent @ some machine), the services it can perform (e.g. get information from
Google) and the history of the agent (e.g. this agent has just performed an activity and has
successfully given an answer back). The set of services is called the Operator’s compe-
tence. Operators will send reports containing results (i.e. output objects) of performed

48 Chapter 3. Coordination Strategies for Multi-Agent Systems

assigned
task instruction |0~ to 1
operator
1.7 1. 0.
sub-task (<2212 activity procedure delivers
0? input object » Y
. < i
object output object report
Figure 3.3

Domain Schema showing parts of the task-method ontology which represents the concep-
tualizations of our interpretation of the coordination task. The graphical notation used,
is defined in [Schreiber et al., 1999]. The three central concepts in the coordination task-
method ontology are task, operator and instruction. Activities need input-object to pro-
duce output-objects. Operators sends reports containing results (i.e. output objects) of
performed activities. There are two parts of instruction: activity, which is a request for
performing directly a technical activity including input-objects, and procedure, which is
a specification of an activity in combination with collaborations.

activities.

Instructions can be assigned by the Manager to an Operator. An instruction tells an
agent what to do. In our ontology we have specified two parts of Instruction, i.e. activity
and procedure. An activity is a request for performing directly a technical activity on
input-objects. The results of an activity, i.e. output-objects, will be reported to the agent
that requested the activity. For example, if the Manager sends an instruction to Operator
A, Operator A will perform directly the activity specified in the instruction and report
back to the Manager.

A procedure is a specification of an activity in combination with collaborations. A
collaborations tells the agent from whom to get the input for its activity and to whom
distribute its output to. For example, agent B is instructed to get a list of URLSs (as input)
from agent A before it has to perform activity 2. Procedures can be used to first configure
the behavior of an agent, before the actual execution of a system.

Using the above described concepts, we can describe the “common sense”
definition for coordination, i.e. the act of working together harmoniously
(cf. [Malone and Crowston, 1993]) as follows. The act of working can be seen as
Operators perform activities. The activities are performed in order to achieve a task.
Together refers to the fact that there are interdependencies between activities. These
interdependencies are the flow of input-objects and output-objects between Operators.

3.3. Coordination Strategy Methods 49

The Operators receive instructions so that the Operators can work harmoniously.

The above-described ontology can form the basis of the knowledge base of agents.
The knowledge base of an Operator should be able to answer questions like: “What ac-
tivities should I perform?” and “To whom do I have to report the outcome of activities?”.
Questions the knowledge base of the Manager should answer include:“How did I divide
the overall task into activities?”” and “To what Operators did I delegate activities?”.

3.3 Coordination Strategy Methods

In this section we model three coordination strategies as PSMs, in order to show the
variety of possible coordination methods. The strategies we selected from Mintzberg
are coordination by Direct Supervision, Standardization of Work and Mutual Adjust-
ment [Mintzberg, 1993]. We omit the strategies Standardization of Skills and Standard-
ization of Output, because they can be seen as variations on Standardization of Work. As
discussed in Section 2.2.1, these coordination strategies can be used to coordinate agent
organizations. The strategy Coordination by Direct Supervision achieves coordination by
having one individual directly controlling others. In Standardization of Work, control is
delegated to others. Mutual Adjustment achieves coordination by a process of informal
communication between agents. The strategies are illustrated in Figure 3.4. These strate-
gies are selected, because they fit within the three organizational structure models from
Mintzberg, as described in Section 2.3.

procedure

output
object

Operator Operator
(a) Direct Supervision, (b) Standardization of Work, (c) Mutual Adjustment
showing control in the showing the delegation of con- showing control in the
hands of a Manager. trol to Operators. hands of agents.
Figure 3.4

Three Coordination mechanisms. The circles represent roles of agents. The letter M
stands for Manager and O for Operator. Authority structures are represented by the black
lines that connect positions. The arrowed curved black lines represent message flows. In
Fig. 3.4(c) there are no Manager and Operator roles, the R stands for requesting agent and
the A stands for agent.

50 Chapter 3. Coordination Strategies for Multi-Agent Systems

We discuss possible interpretations of these coordination strategies in the form of
Manager and Operator PSMs and sequence diagrams. A Manager PSM defines the co-
ordination behavior of an agent with the Manager role. An Operator PSM defines the
coordination behavior of an agent with the Operator role. These PSMs are semi-formally
specified by roles, inferences, functions and a description of the internal control. The
Manager PSMs are methods based on the task described in Figure 3.1. The sequence
diagrams show the sequence of interactions between the agents involved.

To illustrate the working of the PSMs by examples, we make use of a toy system.
The task of this system is “classify resources on the Web into genres given queries”. The
objects involved are query, i.e. a representation of a search question, resource, i.e. a digital
document or image and genre, i.e. a representation of a group of documents that share
the same characteristics, e.g. scientific article, thesis or presentation. The environment is
qualified as dynamic, since the Web constantly changes. As illustrated in Figure 3.5, the
task is broken down into three technical activities and four objects. The activity SEARCH
takes the object query as input and will produce the object candidate. A query can be a
Boolean formula containing keywords.

For example, glucose AND deprivation can be used to search for material
related to a pathological decrease of blood flow to the brain3. The candidates will be
obtained consulting a search engine and are in the form of links (URLs) to resources.
For example, www.brainresearch.edu/introduction.pdf. The activity
OBTAIN takes the object candidate as input from SEARCH and produces resource.
Resources are obtained following the URLs from candidates and downloading to a local
repository. An example of a resource is a document expressed in PDF. The activity
CLASSIFY takes the object resource as input from the activity OBTAIN and produces
the object genre. Genres are determined by matching features from the resources found
on the Web to features of the genre classes. The match criteria and attributes to match
are retrieved from a classification knowledge base. For example, if resource
contains {abstract, introduction, conclusions, references}
then genre-class=scientific article.

The dependencies between the three activities are consumer-producer relation,
which means that there is an obvious sequential relation between the different activities.

In the system, four agents are involved, i.e. Manager, Searcher, Obtainer and Clas-
sifier. Manager plays the role of Manager agent and performs the coordination task.
Searcher is able to perform the activity SEARCH, Obtainer is able to perform the ac-
tivity OBTAIN and the CLASSIFY is performed by Classifier.

3.3.1 Coordination by Direct Supervision

The first strategy, Coordination by Direct Supervision, is based on the idea that there is
one supervisor that will direct all the other Operators involved. [Mintzberg, 1993, p. 4]
has defined Direct Supervision as:

3See www.wnc.lu.se/bkexpbr.html.

3.3. Coordination Strategy Methods 51

query candidate

genre resource
Figure 3.5

Example of a process for resource classification on the Web, showing three ellipses as
technical activities (SEARCH, OBTAIN and CLASSIFY) and four squared boxes as
objects (query, candidate, resource and genre). The arrowed lines show the sequence of
execution.

Direct Supervision achieves coordination by having one person take respon-
sibility for the work of others, issues instructions to them and monitoring
their actions. In effect, one brains coordinates several hands (...)

When we apply this strategy to agents, we can interpret it as follows. There is one
dominant agent with all coordination knowledge, i.e. the Manager, which is in fact the
brain. The Operators, i.e. the several more or less brainless hands, will be controlled
by the Manager. The Manager regulates the process and keeps track of the state of the
solution.

3.3.1.1 Manager PSM Specification

The strategy chosen in the PSM for Direct Supervision is having the Manager control
the Operators in every job. The Manager will instruct the Operators using activities. The
Operators respond with reports that contain the result of the performed activities, i.e. the
outputrole if successfully. If not successful, the Operators will send a report with an error
message.

The specification of the method is shown in Figure 3.6. The current-object role is
initially filled by an input-object delivered by the Requester. The value of the current-
object is used to specify the input-role for the activity to be performed next. The value of
the current-object is updated using the value of the output-object of a report.

This process is designed as a while loop that selects sub-tasks from the task. An
activity is specified based on the select sub-task and the current-object, which represents
the input-object for this activity. Given the available Operators, an Operator is selected
and assigned to the activity.

The Operator receives a message containing the activity description and an input-
object. When the Operator has successfully performed its activity, it sends a report con-
taining an output-object. The Manager updates the current-object with the output-object
from the report sent by the Operators.

52 Chapter 3. Coordination Strategies for Multi-Agent Systems

psm direct-supervision;
can-realize : coordination;
decomposition :
inferences : specify, assign, select;
functions : update;
roles :
input : operators, task, input-object, report;
intermediate : sub-task, activity, current-object;
output : instruction, output-object;
control-structure :
current-object := input-object;
while has-solution select(system-task — sub-task) do
specify(current-object + sub-task — activity);
select(activity — operator);
assign(activity + operator — instruction);
if (report.status==success) update(report — current-object);
else if has-solution select(activity — operator) do
assign(activity + operator — instruction);
else break;
end-if
end-if
end while
end psm direct-supervision;

Figure 3.6

Method specification for Direct Supervision in terms or roles, inferences, functions and
a control structure. The syntax used is the CommonKADS Knowledge-Model Language
as defined in [Schreiber et al., 1999]. We added the function break as exit point of the
while loop.

The corresponding inference structure for this strategy is shown in Figure 3.7. Four
inferences and a transfer function are used in this method:

Select sub-task The first step in the inference selects a sub-task to perform next from
the specification of the task. In the example, the sequence of selected sub-tasks is search,
obtain and classify.

Specify activity The next step in the sequence specifies an activity based on the selected
sub-task and the current-object. The current-object is either the initial input-object (e.g.
query) or an intermediate object received from a report (e.g. candidate). The idea is that
when Operators have performed their activity, they report to the Manager. The function
update, updates the current-role.

Select Operator An Operator will be selected to carry out the activity from the set of
available Operators. Several methods exist to select an Operator. A possible method is to
make a selection utilizing the required competence specified in the activity. If more than

3.3. Coordination Strategy Methods 53

one Operators are available, other selection methods can be applied, such as ranking on
availability, costs, trustworthiness or location.

Assign instructions The last step is coupling the specified activity to the selected Ope-
rator. The instructions are sent in a message to the selected Operator.

Update Current-object When the Manager sends instructions to the Operators, the
Operators report (directly) back to the Manager. A report contains the output-objects gen-
erated by the reporting Operator. The function update, updates the current-object. The
current-objects are used as input-object in the next activity assignment.

the overall task of the system,
e.g. classify web resources

> - - y the work that has to be performed,
task @ sub-task 6.g. obtain

object that represent the input
result of a performed activity of the selected activity,
e.g. report.output=candidate e.g. current.object=candidate

report current-object
specification of a technical
operators activity activity, including input object,
e.g. activity.input=candidate

set of available operators,
e.g. searcher, obtainer and classifier

operator

selected operator on basis of activity description
e.g. obtainer

coupling of activity to operator

instruction H .)
structio e.g. instruction.operator=obtainer

Figure 3.7

Inference structure (using the notation defined in [Schreiber et al., 1999]) of the Man-
ager PSM for Direct Supervision. Boxes represent roles, ellipsis represent inferences and
rounded boxes represent functions. Pointed arrows represent the control flow.

3.3.1.2 Operator PSM Specification

We briefly sketch the expected behavior of the Operator for this strategy. The function
perform activity which are fed by the instructions (i.e. the activity description and input-
objects) received from the Manager. The result of this function is a report, which is the
result of a performed activity including output-objects. The results are to be sent to the
Manager.

54 Chapter 3. Coordination Strategies for Multi-Agent Systems

3.3.1.3 Sequence Diagram

An agent sequence diagram (according to AUML introduced by [Odell et al., 2000]) can
graphically show a sequence of messages between agents. The expected sequence of mes-
sages to be sent in the Direct Supervision strategy is given in Figure 3.8. For now, we
describe the content of a message informally. In Section 6.4, we discuss a method to fill
the content of messages using message content ontologies.

The sequence diagram shows a centralized model, where the relations between the
Manager and the Operators can be seen as Master-Slave, or Client-Server. This strategy
is suitable when most of the agents are not capable of reasoning or cannot hold states.
Furthermore, agent engineers can select this strategy, when they can have access to agents,
but cannot influence the behavior of these agents. The Operators will not “know” that they
form part of a specific multi-agent system.

manager searcher obtainer classifier

T
. instruct("search(query)") | 1
assign |
1
1
|

perform
T report("candidate") activity
update T

: linstruct("obtain(candidate)")

assign

perform
report("resource") activity

update

T
|
|
|
|
|
|
|
|

assign |

jnstruct("classify(resource).)

perform

report("genre") activity

update
assign

Figure 3.8
Sequence diagram showing collaboration patterns between the Manager and the three
Operators using Direct Supervision as coordination mechanism.

3.3.1.4 Application

The coordination strategy ‘“Direct Supervision” differs from classic functional decom-
position, because in classic functional decomposition all control is in the hands of one
control component. The agents in an agent system that apply “Direct Supervision”, have
independent behaviors. This means that the instructed Operators, still decide individually
how to internally process the instructions.

All coordination knowledge is centered in one agent, i.e. the Manager. This can
be attractive from a maintenance point of view, because the Manager is also the single
point of failure. This means that if the Manager fails, the complete system will fail. If

3.3. Coordination Strategy Methods 55

noticed, only the Manager needs to be restarted, replaced or modified. Moreover, if an
Operator fails, the Managers resolves this by finding another Operator. The advantages
and disadvantages of “Direct Supervision” are discussed in Table 3.5 (p.71).

When applying “Direct Supervision”, one must assure that the Operators and Man-
agers are able to interoperate with each other. This means that they use the same means
to communicate and know how to process the content of messages (this is discussed in
detail in Section 5.5.2.3). If multi tasks are to be executed at the same time (i.e. in par-
allel), the Manager and Operators need to keep track of multi tasks. This can be handled
by annotating the exchanged messages, by an identifier, which refers to the identity of a
task.

In case of a failing Operator, the Manager can use a time-out mechanism* to detect
failures and respond accordingly by instructing a replace Operator or let’s the complete
process fail.

A Java implementation of Direct Supervision is given in Figure 5.13 (p.125).

3.3.2 Coordination by Standardization of Work

The coordination strategy, Standardizing of Work decentralizes the control over the work-
ers involved. Standardization of Work has been defined by [Mintzberg, 1993, p.5] as:

Coordination is achieved on the drawing board, so to speak, before work is
undertaken. (...) Work process are standardized when the contents of the
work are specified or programmed. (...) For example “Take the two-inch
round-head Philips screw and insert into hole BX, attaching this to part XB
with the lock washer and hexagonal nut, at the same time holding (...)

One interpretation of this strategy is to have a Manager that instructs Operators with
procedures (i.e. work specification) before the actual operation. A procedure specifies
how Operators should perform their work, such as how to acquire the input-objects, what
to do with them, and to whom to distribute them.

The management of interdependencies, such as producer/consumer, con-
sumer/producer and common limited object, will be delegated to the Operators. The main
role of the Manager is to specify the work before the actual operation. From there on, the
Operators are capable of coordinating themselves. The Operators store in their memories
the procedures they have received. Using these procedures, they know how to act, when
receiving an object from another agent.

3.3.2.1 Manager PSM Specification

In contrast to Direct Supervision, this method does not take into account the flow of
objects. The idea is that control over the flow of objects is delegated to the Operators.
Therefore the overall strategy has two phases: instruction and actual execution. In the

4The Manager waits for a certain period of time on an answer of an Operator. If the Operators does not
respond within this time, the Manager assumes that the Operators has failed.

56 Chapter 3. Coordination Strategies for Multi-Agent Systems

instruction phase, the Manager plays the dominant role by configuring the Operators in-
volved. In the next phase, the Manager only starts the execution. The execution itself is
controlled by the Operators in a decentralized model.

The method specified here only defines the role of the Manager in the instruction
phase, see Figure 3.9. The while loop selects activities from the task. The next step is
to determine the interdependencies of this activity with other activities. These interde-
pendencies include consumer/producer and shared resources. Given the selected task and
interdependencies, a procedure can be specified. The procedure contains a description of
what activity to perform and how the flow of objects is regulated for this activity. The
final step is the assignment of the procedure to an Operator.

psm standardization-of-work;
can-realize : coordination;
decomposition :
inferences : select, abstract, specify, assign;
roles :
input : operators, system-task;
intermediate : sub-task, procedure;
output : instruction;
control-structure :
while has-solution select(system-task — sub-task) do
abstract(sub-task — interdependency);
specify(interdependency + activity — procedure);
select(procedure + operators — operator);
assign(procedure + operator — instruction);
end while
psm standardization-of-work;

Figure 3.9
Method specification for Standardization of Work. The syntax used is the Com-
monKADS Knowledge-Model Language.

The corresponding inference structure of the strategy is shown in Figure 3.10. The
inferences involved are:

Select activity The first step in the inference is to select the activity to perform next
from the specification of the system task.

Abstract interdependencies The next step is to determine the relationships between
the selected activity with other activities. In the example the activity CLASSIFY needs
as input the output from the activity OBTAIN. The idea is that the Manager delegates the
control over interdependencies to the Operators involved. Therefore, the Manager first
has to find out what interdependencies exist.

Specify procedure A procedure is generated with the selected activity and the asso-
ciated interdependencies as input. For example, the procedure for the activity CLAS-

3.3. Coordination Strategy Methods 57

SIFY contains information on the source input (i.e. another Operator) and output direc-
tions. The source input is in the form of a consume from relation. In this case the
consume from relation points to the Obtainer. The output directions are in the form of
the distribute to relation, which in this case refers to the Requester.

Select Operator An Operator is selected from the set of available Operators, to carry
out the activity. In this method the Manager selects an Operator out of the available Ope-
rators, based on the required competence for an activity. Within this strategy, the “pigeon-
holing” strategy (cf. [Mintzberg, 1993], and Section 2.3.2 (p.19)) can be applied. The idea
is that Operators are categorized, based on their competences, and that cases (i.e. activ-
ities) can be categorized into predetermined situations. Given a procedure, one or more
Operators are selected.

Assign instructions The last step in the inference structure is where the procedures are
assigned to Operators.

the overall task of the system, set of available operators,
e.g. classify web resources e.g. searcher, obtainer and classifier
task operators

the work that has

to be performed, sub-task select
e.g. classify
sub-task combined with collaboration,
e.g. consume_from=obtainer,
perform=classify, distribute_to=manage
interdependency @——————| procedure

relations between sub-tasks,
e.g. classify.input = obtain.output

operator

selected operator
e.g. operator=classifier

coupling of procedure to operator

.) o instruction
e.g. instruction.operator=classifier

Figure 3.10
Inference structure (using the notation defined in [Schreiber et al., 1999]) of the Manager
PSM for Standardization of Work.

58 Chapter 3. Coordination Strategies for Multi-Agent Systems

3.3.2.2 Operator PSM Specification

The expected behavior of an Operator in this strategy is more complex then in the Direct
Supervision strategy. Besides the perform activity, that transforms the input-object into
an output-object, there are two additional inferences, process instructions and produce
output. The inference process instructions is activated when the Operator receives an in-
struction from the Manager. The procedure within the instruction is stored in the memory
(i.e. state) of the Operator and is consulted when the Operator receives an input-object.
The inference produce output determines to which Operator the output-object is to be
distributed.

3.3.2.3 Sequence Diagram

In Figure 3.11 the expected sequence of messages is given. The collaboration pattern
shows the two phases of the strategy: the instruction phase and the actual execution. The
two phases are represented by the UML packages instruction and execution, which are
drawn as annotated boxes.

As shown, the Manager plays the dominant role of central planner in the instruction
package by configuring the Operators involved. In the execution package, the Manager
only starts the execution. The execution itself is controlled by the Operators in a decen-
tralized model.

manager searcher obtainer classifier
instruction T T T
1

T
instruct("activity=search, . e . ! .
consume_from=manager, | instruct("activity=obtain, 1| |
!

|

distribute_to=requester" consume_from=searcher, | instruct("activity=classiy,
— distribute_to=classifier") consume_from=obtainer,

>ch distributefto:requester"g

requester

execution

1
1
[j "query”

| "candidate”

: 1 | | "resource”

! "genre" /I |
| I|< T T

Figure 3.11

Sequence diagram showing collaboration patterns between the Manager, the three Ope-
rators and the Requester using Standardization of Work. In the instruction phase the
Manager instructs the three operators. In the instruction phase the Requester interacts
with the Operators. Furthermore, the Operators know how to accomplish the task.

3.3. Coordination Strategy Methods 59

3.3.2.4 Application

The strategy “Standardization of Work™ requires that the Operators should be equipped
with a memory, such as a database, where a configuration can be stored. It means that
Operators should be able to “remember” their role in the multi-agent system. Furthermore,
they should be able to interpret the procedures sent by the Manager.

The strategy is useful in situations where the multi-agent system has to perform a
task multiple times, i.e. the task is of a repetitive nature. If the system’s task only has to
be performed once, the instruction phase can form a communication overload. As will
be shown in the mini experiments (see Section 3.5), the breakpoint of overload is at two
executions of the task. The advantages and disadvantages of “Standardization of Work”
are discussed in Table 3.5 (p.71).

The role of the Manager is crucial in the instruction phase. When the strategy is
in the execution phase, the role of the Manager is limited, which is an advantage in the
overall performance of the system. The reason for this is that there is no redundant com-
munication in the operation, in contrast with Direct Supervision.

An extension of this strategy can be that Operators are able to search for alter-
native Operators. This can be applied when an Operator itself is unable to follow the
instructed procedure. For example, the Obtainer cannot process the object received from
the Searcher, because it is in a format the Obtainer cannot read. To solve the problem, the
Obtainer tries to find another agent that is able to process the object, e.g. Obtainer2,

Another situation is where an Operator cannot find the Operator to whom it is sup-
posed to distribute its output. For example, Obtainer cannot locate Classifier, because the
connection to Classifier is broken. Therefore, Obtainer will search another Classifier.

A Java implementation of Standardization of Work is given in Figure 5.11 (p.123).

3.3.3 Mutual Adjustment

Several articles are predicting agents that can freely travel on the Web and collaborate
with any agent they encounter. For example, Hendler predicts that Web agents will be
able to help users to find anything and regulate their needs on the Web [Hendler, 2001].
In order to do so agents should be able to interoperate with agents they never encoun-
tered before. In cases where agents are not equipped with the knowledge about how to
deal with available coordination strategies (such as Direct Supervision or Standardiza-
tion of Work) Mutual Adjustment can be applied as a coordination strategy. According to
[Mintzberg, 1993, p.4]:

Mutual Adjustment achieves the coordination of work by the simple process
of informal communication. Under Mutual Adjustment, control of the work
rests in the hands of the doers. (...) Because it is such a simple coordina-
tion strategy, it is naturally used in the very simplest of organizations (...).
Paradoxically, it is also used in the most complicated ones (.. .)

There are several ways to interpret Mintzberg definition of Mutual Adjustment. Our
interpretation is that in Mutual Adjustment there are no Manager and Operator roles in-

60 Chapter 3. Coordination Strategies for Multi-Agent Systems

volved. There are agents, which are aware of their own competences. A Requester will
start “conversations” with all present agents.

One of the simplest ways to apply Mutual Adjustment is to have agents only to
communicate objects to all known agents. This communication can be seen as a (network)
broadcast, which can be envisioned as: “Hello All, I have object X, who can do something
with it?”. If an agent can do so, i.e. transform the received object into another object, this
agent communicates the new object to all other agents.

Alternative method is to communicate both the object and the task. In order to limit
the number of interactions, the agent could remember agents it was able to collaborate
with. This can be seen as a list of preferred peers.

3.3.3.1 PSM specification

The specification of the method is given in Figure 3.12. When an agent (i.e. the Requester)
has to carry out a task, it distributes the input-object to all available agents. When the
input-object is received, the agents match the object to their competences and check
whether they are capable of performing an activity with this object. If they do so, they
define an internal activity, perform the internal activity and distribute the output-object to
all other agents. From there on, the process repeats, until the Requester has received the
output role it needs.

psm mutual-adjustment;
can-realize : coordination;
decomposition :
inferences : match;
functions : perform-activity;
roles :
input : input-object;
intermediate : activity;
output : output-object;
control-structure :
if has-solution match(input-object + competence — activity);
perform-activity(activity + input-object) — object-object);
end if
end psm mutual-adjustment;

Figure 3.12
Method specification for Mutual Adjustment. The syntax used is the CommonKADS
Knowledge-Model Language.

The corresponding inference structure of the strategy is shown in Figure 3.13 show-
ing one inference: match competence, and one function perform activity.

Match competence This function is called every time an object is received from a
broadcast. In this case the object is matched to the available services of the agent. When

3.3. Coordination Strategy Methods 61

there is a solution an internal activity is generated that specifies an activity that can be
performed using the received object.

Perform activity When the Match inference has found a match and has defined an
internal activity, this function actually performs the activity. The output-object will be
distributed (i.e. broadcasted) to all known agents.

available input,

produced output,
€.9. query e.g. candidate
input-object perform activity output-object
A
activity
specification of activity,
including input, e.g.
activity.name=search
activity.input=candidate
competence

available services,
e.g. competence.service = {search}

Figure 3.13
Inference structure (using the notation defined in [Schreiber et al., 1999]) for Mutual Ad-
justment.

3.3.3.2 Sequence Diagram

As shown in Figure 3.14 the interactions between the agents look like a broadcasting
model. Although it looks like an overhead of exchanged messages, this strategy can be
suitable when there is no control knowledge present. However it does not guarantee that
the Requester will receive a solution to its problem. Furthermore, in this example, for
every broadcast, exactly one agent can perform an activity given the broadcasted object.
In other cases several agents could respond to a broadcast or no agent could respond.
The main problem is that the state of the problem-solving is distributed so that no agent
has control over it. This could lead to complete chaos or emergent behavior. Chaos can
emerge when agents are continuously broadcasting problems and no single agent can
solve it. Emergent Behavior could appear when agents that did not know of each other,
would find each other and help each other in solving problems. Suppose multiple Opera-
tors start working on the same problem, several perspectives (or solutions) could emerge.

62 Chapter 3. Coordination Strategies for Multi-Agent Systems

requester searcher obtainer classifier

T
"query”
query "query" . .
>__'_| query
"candidate” "candidate” ~ |
I:IF< —> "candidate” ~ .
" " — 7=
resource =< "resource”
I:]/: | "resource” I
o~
" " .
genre | =<
! T~ "genre” | "genre”

Figure 3.14
Sequence diagram showing collaboration patterns between the involved agents using Mu-
tual Adjustment.

3.3.3.3 Application

The strategy “Mutual Adjustment” can be applied when the structure of a problem is
unknown, unavailable or unreadable (i.e. the problem is expressed in an unknown format
to the agent). It can also be applied when the agents are heterogeneous and cannot agree
to use one of the other two strategies. For example, there is no Manager available, or the
Operators do not want to be controlled by another agent.

As with “Direct Supervision” and “Mutual Adjustment”, the agents need a common
means to communicate with each other, such as message-based communication. Further-
more, to keep track of tasks, messages need to be equipped with identifiers to refer to
task’s identifications.

The advantage is that there is no central coordinator (Manager) and in an ideal case,
the agents are capable of solving problems themselves. In other cases, where agents are
not capable of solving problems broadcasted by other agents, this strategy cannot guaran-
tee that the system is capable of executing every task. The advantages and disadvantages
of “Mutual Adjustment” are discussed in Table 3.5.

3.4 Implication for External Agent Design

This section discusses how the PSMs can be integrated into the behavior of an agent. The
behavior of an agent can be described using various techniques, such as activity diagrams,
use case and state diagrams [Odell et al., 2000]. In this case, we will use state diagrams to
describe the behavior of an Operator and of a Manager. The idea is that agent engineers
can use these state diagram as a design pattern. In Section 5.5.2.1 (p.120), we discuss the
application of the two behaviors described below.

3.4. Implication for External Agent Design 63

3.4.1 Operator Agent Behavior

The behavior of an Operator consists of a composition of three life cycles: the platform life
cycle, the instruction life cycle and the execution life cycle. A life cycle is a collection of
states an agent can hold and fransactions that allow traverse between states. This relation
is of a cyclic nature, i.e. the states form a circle that can be traversed multiple times. The
state diagram is illustrated in Figure 3.15.

send

{ register

—_ —_ —_— —_— —_— ——

N 7/ N / consume \

Teceive
instructions

configuration
negotiation

configure
operation 1
behaviou

send
modify

consume
input perform
activity

send
deregister

distribute
output

activity performed

I

I

} operational }\
behaviour

AN platform life cycle 7/ N\ instruction life cycle 7/ N

Figure 3.15

State diagram showing states (rounded boxes) and transitions (arrowed lines) of the three
life cycles of the Operator’s behavior.

The platform life cycle starts when an agent joins a multi-agent system. In order
to do so, the agent has to register itself, in a pro-active manner, at an agent platform
(cf. [FIPA, 2002c]). This registration is done at the AMS (the Agent Manager Service),
which holds a register of the physical addresses (i.e. URLs) of agents. This can be seen
as a white page service. For example, the Operator googlewrapper will register itself as
googlewrapper@gaper.swi.psy.uva.nl.

Next, in order to be found by other agents, an agent has to register its services at the
DF (Directory Facilitator). The DF, in fact a yellow page service, holds a directory of ser-
vices of agents. A service can be “’this agent can interact with the search engine Google.
On the basis of a boolean query, a list of URLs and descriptions will be returned”. In Sec-
tion 5.2 we discuss an elaborate approach to describe and apply agent competences. The
platform life cycle ends when an agent changes or wants to leave the multi-agent system.
For that, it has to modify or de-register its services. The registration, modification and de-
registration at the AMS and DF are described in the FIPA agent life cycle [FIPA, 2002c].

The state transitions, i.e. register, modify and deregister, are part of a
pro-active behavior. This means that the Operator has to take initiative to make itself
known at the agent platform.

The instruction life cycle starts when the Operator receives instructions from the
Manager agent. The Operator will move to the configuration negotiation
state. From this state, the Operator will try to configure its operational behavior. If suc-
cessful, the Operator will be part of a (larger) application and will wait until it can enter
the operation life cycle. If the configuration fails, the negotiation will be aborted and the

64 Chapter 3. Coordination Strategies for Multi-Agent Systems

Operator will leave the instruction life cycle. Otherwise, the Manager will to report the
Operator that the application execution is finished. In this case the Operator will reset the
configuration of its operational behavior and leave the configuration life cycle.

The execution life cycle starts when the operational behavior is successfully config-
ured. From there, the Operators wait to consume input. The Operator can consume input,
from the operation state in case of “Direct Supervision” and “Standardization of Work™
strategy. In case of the “Mutual Adjustment” strategy, the Operator can process input from
the known at platform state.

An Operator can consume input both re-active as pro-active, see also Section 2.2.1.
These two modes depend on the instructions from the Manager and the applied coor-
dination strategy. In “Mutual Adjustment” and “Direct Supervision”, the mode will be
re-active. In “Standardization of Work” the mode depends on the Manager’s instructions.

Given the acquired input, the Operator performs the instructed activity. The result
of the activity, i.e. output-object, will be distributed according to the instructions of the
Manager. After output distribution, the Operator will go back to the operation state.

3.4.2 Manager Agent Behavior

In “Direct Supervision”, the Manager is involved in the configuration and execution
phase. The Manager is only involved in the configuration phase when applying “Stan-
dardization of Work”. In “Mutual Adjustment”, the Manager plays no role in the two
phases, however the Manager could facilitate negotiations between the requester and the
Operators.

The behavior of the Manager consists of a composition of three life cycles, i.e.
platform life cycle, configuration life cycle and execution life cycle. The platform life
cycle is the same as the platform life cycle of the Manager, see Figure 3.16.

send
register

failed

send
modify

failed
operation

send
deregister —

terminate AN
operation
|) |
operation
AN platf_orm Iificyle_ . s/ N\ execution life cycle /

—_— = — —_ —_ —_- — =

Figure 3.16
State diagram showing states (rounded boxes) and transitions (arrowed lines) of the three
life cycles of the Manager’s behavior.

The configuration life cycle starts when the Manager receives a task from the re-

3.5. Mini experiments 65

quester. The Manager will recruit Operators by consulting the agent platform’s AMS and
DF to search for relevant Operators. When a set of candidate Operators is found, the
Manager will start negotiations with them. In case of success, the Manager will enter the
execution life cycle.

Depending on the chosen coordination strategy, the behavior of the Manager is pro-
active or re-active. When applying “Direct Supervision”, the Manager will be actively
involved in sending Operators instructions related to activity and the related input-role. In
“standardization’, the Manager can choose to play a role in execution. For example, the
Manager can take care of the communication with the Requester.

3.5 Mini experiments

In this section we discuss results that are drawn from three mini experiments. For every
described coordination method we implemented a prototype.

The experiments aimed to analyze alternative coordination structures applied to the
web resource classification system as described in Section 3.3. The analysis is built up
out of two parts: an efficiency analysis and a comparison between the three strategies.
The qualitative analysis reports on the dynamics of the system. The quantitative analysis
discusses the number of messages sent and the execution time. The aim of the quantita-
tive analysis is to find out if there is a communication overhead and what influence this
overhead will have on the system’s performance.

The agents involved in the experiment are the ones that have been introduced in
Section 3.3, i.e. Manager, Searcher, Obtainer and Classifier. We are interested in the per-
formance of the three coordination strategies, not in the performance of the agents’ com-
petences. Another reason to disregard the use of web services, such as Google is that a
lot of popular services only allow a limited number of request within a period of time.
This means that after a number of requests, the service would deny a service request
and therefore the experiment would fail. Therefore, we replaced the competences of the
agents with stubs. Stubbing is a standard technique in software engineering in which only
the external behavior of a process is built, to test this behavior in relation to other pro-
cesses [Sommerville, 1995]. In this case, we simulated the behavior of a process by the
expected time needed to perform the process. The implementations of the agents’ com-
petences are discussed in Table 3.1.

3.5.1 Direct Supervision

In order to describe the outcomes of the experiment using Direct Supervision, we discuss
the dynamics of the Manager within the system. Using the activity log of the Manager,
we constructed an inference trace. This trace is described in Table 3.2. The steps are
described below.

In step O, the roles task and Operators are initialized. Next in step 1, the inference
select selects search as first activity, which is used in step 2 to specify activityl. The
activity activityl instructs the Operator from whom to consume its input roles and to

66 Chapter 3. Coordination Strategies for Multi-Agent Systems

Name Activities Implementation

Manager Agent instruct(SystemTask, Operators)

— instructions

Manager agent makes use of a coordination strategy.

Searcher search(query) — item Searcher makes use of external search services
such as Google.
Obtainer obtain(item) — resource Obtainer make uses of standard Internet techniques,
to download resources, i.e. HTTP protocol.
Classifier classify(resource) — genre Classifier makes use of an external
classification library.
Table 3.1

Agents involved in the experiment and the implementation of their competences. The ac-
tivities are notated as “transform job”(“input”) — “output”, where “—”" means produces.

whom to distribute its output roles, after successfully carrying out its activities. In this
case, the Operators have to consume and distribute their roles from and to the Manager.
Next, the activity is assigned to the Operator Searcher in the form of instructions. When
Searcher has completed its activity, it reports to the Manager in step 4. From there the
Manager supervises Obtainer in the steps 4-8 and the Manager supervises Classifier in
steps 9-12.

Step Inference Roles

0 init System task = { search, obtain, classify }
Operators = { searcher, obtainer, classier }

1 select sub-task sub-task1 = search(query) — candidate

2 specify activity activity1 = { consumeFrom(Manager), search(query),
distributeTo(Manager) }

3 assign activity instructions = { activity 1, Operator(searcher) }

4 update current-object current-object=candidate

5 select sub-task sub-task2 = obtain(candidate) — resource

6 specify activity activity2 = { consumeFrom(Manager), obtain(candidate),
distributeTo(Manager) }

7 assign activity instructions = { activity2, Operator(obtainer) }

8 update current-object current-object=resource

9 select sub-task sub-task3 = classify(resource) — genre

10 specify activity activity3 = { consumeFrom(Manager), classify(resource),
distributeTo(Manager) }

11 assign activity instructions = { activity3, Operator(classifier) }

12 update current-object current-object=genre

Table 3.2

Part of the interference trace of the Manager when applying Direct Supervision.

For every step in the task, the Manager has to send a direct order (i.e. send a mes-

sage) to an Operator. The Operator reports (i.e. sending a message) directly to the Man-
ager. Therefore there are two messages involved for every step. This regime does not
change when the number of runs increases. The formula to determine the number of mes-
sages exchanged between Manager and Operators is given in Table 3.4.

3.5. Mini experiments 67

3.5.2 Standardization of Work

Using standardization, the inference starts with an initialization of the roles fask and Ope-
rators in step 0 (see Table 3.3). Next in step 1, the inference select selects search as the
first activity which is used in step 2 to determine the collaborations. In this case, inter-
dependencies for the activity select are getting the input role guery and giving the output
role to the activity obrain. Given these two interdependencies, the Manager specifies a
procedure that contains one activity that tells the Operator to consume its input from the
Manager, apply the activity search and distribute its output to Obtainer. Then the Man-
ager assigns the procedure to the Operator Searcher. In steps 5-8 the Manager instructs
the Operator Obtainer. The Operator Classifier is instructed through steps 9-12. The re-
sulting collaboration patterns are illustrated in Figure 3.11. Details on the outcome of this
experiment can be found in Figure 3.17.

Step Inference Roles

0 init System task = { search, obtain, classify }
Operators = { searcher, obtainer, classifier }

1 select sub-task sub-task1 = search(query) — candidate

abstract interdependency collaboration0 = { query, sub-task(search) }

collaboration] = { sub-task(search), sub-task(obtain) }

3 specify procedure procedurel = { consumeFrom(Manager), sub-task(search),
distributeTo(obtainer) }

4 assign procedure instructions = { procedurel, Operator(searcher) }

5 select sub-task sub-task2 = obtain(candidate) — resource

6 abstract interdependency collaboration2 = { sub-task(search), sub-task(obtain)}
collaboration3 = { sub-task(obtain), sub-task(classify) }

7 specify procedure procedure2 = { consumeFrom(searcher), sub-task(obtain),
distributeTo(classifier) }

8 assign procedure instructions = { procedure2, Operator(obtainer) }

9 select sub-task sub-task3 = classify(resource) — genre

10 abstract interdependency collaboration4 = { sub-task(obtain),
sub-task(classify) }
collaboration5={ sub-task(classify), genre }

11 specify procedure procedure3 = { consumeFrom(obtainer), sub-task(classify),
distributeTo(Manager) }

12 assign procedure instructions = { procedure3, Operator(classifier) }

Table 3.3

Part of the interference trace of the Manager agent when applying Standardization of
Work.

The formula to determine the number of messages exchanged between Manager and
Operators is given in Table 3.4. The Manager instructs the Operators involved by sending
one individual message to them, i.e. s messages, where s is the the number of steps (i.e
subtasks) in the task. For every task, the Manager and Operators need s + 1 message: 1
message for Manager to the first Operator (i.e. the first step in the task), s — 1 messages
for transactions between s Operators and 1 message for the last Operator (i.e. the last
step in the task) to the Manager. The instruction has to be done once independently of the
number of runs.

68 Chapter 3. Coordination Strategies for Multi-Agent Systems

3.5.3 Mutual Adjustment

As illustrated in Figure 3.14 the agents send input roles to every known agent. The Re-
quester sends the input role query to the agents Searcher, Obtainer and Classifier. The
agent Searcher can match this input role to one of its activity in the agent’s competence.
Searcher performs the activity and sends its output-object to the agents Manager, Obtainer
and Classifier. From there, Obtainer performs its activities and distributes the result to the
other agents. Finally, Classifier performs its activity and after distribution, the Requester
recognizes the output-object as solution to his problem.

The formula to determine the number of messages exchanged between Manager and
Operators is given in Table 3.4. A “Mutual Adjustment” starts from the Requester sending
a — 1 messages to all known agents, where a is the number of available agents. When an
Operator processes a received message, it sends a — 1 messages to all known agents,
including the Requester. This process repeats s times, until the Requester has received
the solution to its request.

3.5.4 Evaluation

The experiments were run on two Linux machines (gollem and gaper) using four FIPA-
compliant agent platforms’. Every machine was equipped with two agent platforms each
inhabited by one agent. The agents Manager and Obtainer were located on gaper. The
agents Searcher and Classifier were located on gollem.

The FIPA-HTTP message transport protocol was used for message trans-
port [FIPA, 2002d]. This protocol was chosen, because this protocol expensive and could
lead to a communication overhead of the agents.

3.5.4.1 Results

In order to measure the efficiency of the strategies, we examined the number of messages
sent in order to determine the costs of communication and the process time. The Man-
ager calculated the process time® needed to perform one execution run. Table 3.4 lists a
quantified comparison of the three coordination strategies.

Both the communication weight as the process time show a linear relation’ with
the number of queries, see Figure 3.17. Due to a good network connection, the costs of
communication transport can be discarded, in contrast to the costs of processing com-
munication by the agents, which could lead to communication overhead. However, no
(exponential) communication overhead has occurred. A possible reason for the fluctuat-
ing results of Standardization of Work (SW) and Mutual Adjustment (MA) is interfering
network traffic, such as Internet traffic, backup mechanisms and other experiments.

5See http://gaper.swi.psy.uva.nl for more details on the gaper platform.

6The Manager agent used the system time to calculate the process time needed to perform tasks. The time
provided to the Manager agent was dependent of the operating system, the agents were running on.

TThe correlation coefficients of the three datasets are 0.998899 for “Direct Supervision”, 0.639743 for “Stan-
dardization of Work™ and 0.868646 for “Mutual Adjustment”.

3.5. Mini experiments 69

Strategy Number of messages Process Time
Direct Supervision m = 2qs 1786q + 141
Standardization of Work m = s+ (s + 1)q 369q + 451

Mutual Adjustment m = gs(a —1) 536q + 7832

Table 3.4

Quantitative analysis of the three coordination strategies. The “number of messages” for-
mulas are determined by counting the number of interactions in the collaboration dia-
grams in Sections 3.3.1.3 (p.54), 3.3.2.3 (p.58) and 3.3.3.2 (p.61). The “process time”
formulas are determined by doing a regression analysis on the data gathered by the man-
ager, as displayed in Fig. 3.17 The variable m represents the number of messages, s the
number of steps in the task, ¢ the number of queries (or runs) and a is the number of
agents (i.e. number of Operators plus the requesting agent).

When looking at the process time, Standardization of Work appears to be the most
efficient. The reason for this is that there is no superfluous communication. Moreover, the
agents can process objects in parallel®, thanks to a buffering mechanism. This means that
the agents can add incoming messages onto a stack and process these one by one in the
agent’s own tempo. This is also the case in Mutual Adjustment. Direct Supervision cannot
process objects in parallel, because in the given method, the Manager has to process all
the objects one by one.

In Section 5.6, we discuss the application of “Standardization of Work” in a case study
on classification of conference submissions. The operationalization of the “Direct Super-
vision” and “Standardization of Work™ are discussed in the Sections 5.5.2.3 and 5.5.2.2.

3.5.4.2 Comparison

The results presented above give indicators of the performance of the system. One could
also take into account the costs of equipping agents with reasoning power and the ability
to self-configure. Other issues are summarized in Table 3.5.

The advantage of “Direct Supervision” is that the Operators are relatively small,
because all control knowledge is maintained by the Manager. This can be preferable when
the Operators cannot be changed, or when the Operators are not meant to be agents, such
as P2P oriented (web)services. Furthermore, the control over the operation is centralized
in the Manager. If an Operators fails to execute its activity, the Manager resolves the
problem by locating a replacement Operator. From a maintenance point of view, this can
be appealing.

A lot of design paradigms and methods are based on centralized control. Probably
the first generation agent system, will be based on this strategy. However, centralizing
control knowledge means building one “fat” agent that has to play the Manager role.

8Parallel processing in the sense that agents do not need to wait for each other. The agent still reasons in a
sequential matter. The agent implementation does not take into account multi processors.

70 Chapter 3. Coordination Strategies for Multi-Agent Systems

Comparison of Coordination strategies

140000 [

120000 |
100000 | s]

80000 |- e .

time (mili seconds)

60000 | e L A Y I
40000 |-

20000 -

0 k= 1 1 1 1 | | | | |
0 10 20 30 40 50 60 70 80 90 100
number of queries

Figure 3.17

Results from three mini experiments comparing 1 to 100 queries against process time.
The dashed line represents Direct Supervision(DS) combined with a line (DS fit) that
represents the fit function for process time (see Table 3.4), the straight line represents
Standardization of Work (SW) combined with its fit function (SW fit) and the dashed line
with the “plus” symbol represents Mutual Adjustment (MA) combined its fit function
(MA fit). The formulas for the fit functions for process time are given in Table 3.4.

When a lot of Operators are involved, the Manager could get too complex or too slow,
i.e. the attention span can get overstressed. Moreover, if this agents fails, because it has
to supervise too much Operators, the task cannot be performed. The point of having one
big agent is also advised against in [Wooldridge and Jennings, 1995].

“Standardization of Work™ has the advantage that it is efficient. This can be ex-
plained by the fact that the Manager delegates coordination to the Operators by exactly
specifying their activities. There is a clear distinction between the instruction and execu-
tion knowledge. The Manager is occupied with instructions and Operators with execution,
as devised in the division of work method described by Mintzberg [Mintzberg, 1993], see
also Section 2.2.3. This means that the Manager does not interfere with execution, be-
cause the Manager has delegated the control to the agents. A reason for this can be that
the execution of the Operators is too complex to supervise because many objects have to
be transferred. Furthermore, the Manager can choose not to interfere in complex negotia-

3.5. Mini experiments 71

tions.

A disadvantage is that all the Operators involved need to be equipped with the abil-
ity to reason about procedures. Not in all situations, the designer has the means to alter
existing agents or services. Furthermore, when something goes wrong, it is not clear how
the Operators will resolve problems.

Strategy Advantages Disadvantages Manager Knowledge
Direct Supervision “Thin” Operators Single point of failure ~ Task Coordination
Control centralized One “Fat” agent Available operators
“Slow” Input and output objects
Fail-over mechanisms
Standardization of Work Efficient “Fat” operators Task Instruction
Control in hands of operators Error handling Available operators
Standard situations
Mutual Adjustment Emergent behavior Chaos -
Flexible No solution guarantee
Open Miscommunication
Table 3.5

Summary of advantages and disadvantages of the three coordination strategies, combined
with the knowledge needed for the Manager.

From an agent perspective, “Mutual Adjustment” is the most interesting strategy,
because it can lead to Emergent behavior. Unexpected dynamics can occur, thanks to
different behaviors and expertise. The system can be flexible because there is no central
control. Furthermore, the number of agents can be dynamic, meaning that agents can enter
and leave the system during execution time.

A disadvantage is that this strategy cannot guarantee that tasks are solved. In an
ideal situation, all existing agents could be contacted via communication. However, not
for all problems agents or services exist. Furthermore, not all agents share the same con-
ceptualization of problem, task, object and solution.

If every agent broadcasts objects (and tasks) to all known agents for every problem,
a lot of this communication is purposeless and could lead to network overload. Further-
more, we did not(yet) take into account what happens when multiple agents can solve
the problem. The Requester could compare multiple solutions and choose the one with
the highest quality.

Another way to compare the strategies is to look at the amount and type of knowl-
edge the Manager requires’. As described in Table 3.5 the Manager in “Direct Supervi-
sion” needs knowledge about the process in detail in order to directly instruct the Opera-
tors. Combined with this knowledge is a method to select the appropriate Operator from
a repository of available Operators. Furthermore, it has to handle input, intermediate and
output objects, which are exchanged between the Requester, Operators and the Manager.
Besides that, it needs to apply one or more fail-over mechanisms, in case something goes
wrong. The Manager in “Standardization of Work”, only needs to know what Opera-
tors are available and the process. Furthermore, it needs to have a method to construct a

9With exception to “Mutual Adjustment”, where there is no Manager.

72 Chapter 3. Coordination Strategies for Multi-Agent Systems

Multi-Agent plan, including the allocation of an Operator from a repository of available
Operators.

3.6 Discussion

We presented a knowledge-based approach to model coordination strategies in order to
gain insights in the design of coordination structures in agents systems. We discussed
the modeling of three known coordination strategies as problem-solving methods. The
semantics for coordinating joint actions was made explicit and sharable by means of a
task-method ontology.

From the three mini experiments we can see the differences between Direct Su-
pervision, Standardization of Work and Mutual Adjustment. Direct Supervision shows a
centralized model, i.e. all coordination knowledge (i.e. strategic and supervision) is con-
centrated in the Manager. The Manager takes care of managing the relations between
activities and Operators. In Standardization of Work we can see a pattern of a decentral-
ized model, where the Manager only plays the role of a strategic planner. Knowledge
about coordination is distributed among the Operators. In Mutual Adjustment there is no
division of roles into Operators and Managers. The pattern shows a broadcast commu-
nication model where every agent tries to communicate with all available agents. The
patterns looks expensive, however the costs of building a Manager should be subtracted.

We have shown, to some extent, that a knowledge-based approach can represent
our interpretation of concepts and relations of coordination. PSMs were applied to show
how agents can be equipped with lines of reasoning for handling coordination. However,
the inference structures for the different strategies are still of a provisional nature. More
elaborate structures have to be defined. For example, ontologies and PSMs could be spe-
cialized on the grounds of the type of agents, environment, task or domain.

From an agent point of view, the Mutual Adjustment strategy is the most appealing.
There is no central coordinator (Manager) and the agents are capable of solving problems
for themselves. However, applying this strategy does not guarantee that the agents do
so. For example, if an input is distributed (broadcasted) among agents and no agent is
capable of performing an activity with it, the problem is not solved. In that case the agent
that started the Mutual Adjustment could try to modify the input-object or choose another
coordination strategy

Another approach could be that the agent that started the Mutual Adjustment would
distribute an expected output. Instead of matching their competence based on input-
objects, they could use the output-object as reference. When an agent has found a match,
the agent needs an input-object. To acquire input-objects, the agent can ask other agents
if they can provide these objects. However, from a traditional software engineering point
of view, the engineer and possibly the end-user want to have control over the system.

We discussed several considerations for choosing the appropriate strategy to use.
One of these considerations is related to the number of agents. For small systems, where
there is a limited set of agents, Direct Supervision could be a good candidate, because
the Operators do not need to be equipped with additional functions in order to reason

3.6. Discussion 73

on instructions as within Standardization of Work. The advantage and perhaps also the
disadvantage of Direct Supervision is that control is centralized. When the number grows,
both the attention span of an agent engineer and a Manager agent can be overstressed. In
this case (i.e. larger distributed systems) the other two strategies are better candidates.

When a task is repetitive, Direct Supervision seems to be the best candidate. How-
ever, if the environment is dynamic, the instructions of the Manager could not be suitable
anymore. When Operators do not want to agree on having a Manager or the task descrip-
tion is not present, Mutual Adjustment could be applied.

The costs of building a centralized or decentralized Manager should also be taken
into account. In addition, one should also consider the costs of equipping Operators with
reasoning power. From that perspective, the Manager of Direct Supervision is the most
expensive Manager. The agents in Mutual Adjustment are the most expensive Operators.

When there are multiple ontologies involved, ontology translation can be allocated
to one agent, i.e. the Manager, when applying Direct Supervision. In the other strategies
the Operators need to be equipped with ontology translation knowledge.

In Section 5.4 (p.108), we discuss how a number of the coordination strategies
(“Direct Supervision” in Section 5.5.2.3 (p.122) and “Standardization of Work™ in Sec-
tion 5.5.2.2 (p.122)) are embedded into an interoperability framework.

Chapter 4

Five Capabilities Model

In this chapter we present the 5 Capabilities (5C) model which is a conceptual framework for analyzing
and designing the capabilities of an intelligent agent. The SC model defines five dimensions of agent intelli-
gence - using the notion of separation of concerns - where each dimension plays a role in the development
of intelligent software agents. These dimensions are communication, competence, self, planner and envi-
ronment. The company Bolesian B.V. first proposed the 5C model during an EU-funded project, called
MARTRANS [van Aart et al., 2000]. From there it was developed as a part of internal Bolesian develop-
ment projects and prototypes were built in Java and Delphi. Later it is was refined and used as professional
agent analysis and design framework by Acklin B.V. to develop commercial applications. This chapter is
partly based on two articles: Agent-based Logistic Service Provision co-authored by Kris van Marcke, pub-
lished at the Fifth International Conference on the Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM 2000) and International Insurance Traffic with Software Agents co-authored by
Kris van Marcke, published at the 15th European Conference on Artificial Intelligence (ECAI 2002).

4.1 Introduction

The Five Capabilities (5C) model is a conceptual framework, based on a generalization
of different types of agent capabilities, which can be found in the agent literature. The
5C model has been the design guide for the development of a series of intelligent agent
application prototypes and commercial applications. The development of the applications
showed that functional as well as technical constraints can be reflected along the five
dimensions, using the notion of separation of concerns. Depending on the requirements of
the application one can focus on each capability that needs attention, without getting lost
in the complexity of the entire design. Applications that have been developed according
to the 5C design guide include:

Supply in e-retail Special orders placed through the Internet to a retail-chain are deliv-
ered within hours to the nearest shop.

Intelligent Freight Planner IFP Requested by the European Commission (DG7): a dis-
tributed transport planning application was implemented to help organizing inter

76 Chapter 4. Five Capabilities Model

modal freight transportation processes [van Aart et al., 2000].

International claim handling with the KIR system A multi-agent application that
runs across different insurance companies to facilitate cross-border claim han-
dling [van Aart et al., 2002b]. In Section 4.4 we discuss this application in detail.

The questions that lead to the development of the SC model are the following: How
do the relevant agent requirements come together?, What is the role for each of the agent
requirements to play in the final picture?, How can we understand the relevance and
importance of a single detailed contribution in the context of this complex collection?
and How to understand and be able to explain the real added value of agent technology?

To give answers to these questions we will define five dimensions of agent intel-
ligence - using the notion of separation of concerns - where each dimension can play
a role in the development of intelligent software agents. In the following section, these
dimensions are is explained in further detail.

4.2 The Five Dimensions

An agent in the 5C model is separated into five distinct dimensions: communication, com-
petence, self, planner and environment. The dimensions are framed into models where
each model is responsible for one particular kind of capability an agent requires. One
of the inspirations of the 5C model is the metaphor of an individual agent as an infor-
mation processing brain, where functionality emerges by combining different specialized
elements, i.e. models that cooperate [Morgan, 1996]. Another rationale behind the dimen-
sions of the 5C model is a method to couple heterogenous expert systems (or knowledge
based systems) [van Aart et al., 2000]. In this method, we extend existing expert systems
with agent capabilities. Such a system, i.e. agent should be able perform a number of
tasks. Furthermore, the agent should be able to communicate with other agents and sys-
tems. In order to cope with complexity, we applied the separation of concern principle
and defined a competence model and a communication model. The competence model
is responsible for executing tasks and the communication model handles all interactions
between agents and other systems. The communication model has interpretation, con-
versation and ontology handling functions using knowledge of messages, languages and
protocols (see Section 4.2.2). Next to communication, information about others actors
is to be acquired and stored. Therefore we defined the environment model, which gives
the agent a view on the world it operates in (e.g. which other agents and systems it can
interact with, see Section 4.2.5).

The process of task execution proceeds three steps: tasks identification, task plan-
ning and actual task execution. To determine what tasks have to be performed, we defined
the self model. This model gives the agent an idea of what the agent is doing (e.g. what are
its tasks, goals, jobs, states, capabilities) and should be able to facilitate self-monitoring,
self-maintenance and self-steering (see Section 4.2.3). The planning of the execution of
tasks is the concern of the planner model that enables an agent to autonomously decide
how to spend its time. The model can contain various planning strategies for meeting the

4.2. The Five Dimensions 77

dimension concept capability learning
communication messages, language, protocol, interaction, converse, interpretation
message content ontology ontology handling
competence tasks, methods, task execution skills
domain knowledge memory
self identity, name, goals, state introspection, reflection, self perception
role, competences, location life cycle management,
instruct planner
planner autonomy, agenda task selection, execution emergencies,
control, monitoring, task performance
emergency handling
environment actors, perception, reaction, accumulate and explore
sensors and effectors actor modeling environment
Table 4.1

The five dimensions of the 5C model with concepts, capabilities and learning abilities as
rationale for the breakdown of an agent into the five dimensions. The relations between
the models depend on individual designs. One example of an agent design according to
the 5C model is described in Section 4.4. Considerations when to use or omit a model are
given in Table 4.3 (p.96).

agent’s goals (see Section 4.2.4). Finally, the competence model contains the methods and
knowledge that enables an agent to execute the tasks it is designed for (see Section 4.2.1).
How each of the dimensions will eventually be given shape, depends on the particular
kind of agent or the particular application.

In the remainder of this chapter we discuss the dimensions in more detail. For every
dimension we discuss the generalization of different types of agent capabilities catego-
rized in concept, capability and learning abilities. An overview of the dimensions is given
in Table. 4.1. We should note that the SC model is intended to be a conceptual model,
rather then a technical framework. Most of the issues we try to allocate into 5 dimensions
- e.g. “reflection” or “actor modeling” are not resolvable in general terms. Technical im-
plementations can be be partial and biased to the agent application in mind. One example
of an agent design conform the 5C model is discussed in Section 4.4.

4.2.1 Competence Model

An agent is designed to perform - even to excel in - one or a small number of tasks. We
see task offering as service offering. An agent can either perform the task or service itself
if it is part of the agent. Otherwise, the agent can consult another non-agent system, such
as a legacy system [Genesereth and Ketchpel, 1994]. In Sections 4.4.4 and 5.3.3 (p.105),
we discuss how agents can access legacy systems.

The designer expects the agent to be competent and rational in this task perfor-
mance [Newell, 1982]. Agent types are often named after the tasks they are designed
for, such as “searcher”, “analyst”, “bidder”, “buyer” and “seller”. For example, for
knowledge-based agents (i.e. agents that perform knowledge intensive tasks) the com-
petence model can consist of problem-solving methods. For tasks of a different nature,

78 Chapter 4. Five Capabilities Model

it can rely on other techniques such as algorithmic models, databases or statistical mod-
els. The competence model finally encompasses the domain knowledge required for the
correct execution of its problem-solving methods.

A competence model can embody the capabilities: task execution and memory
function. Task execution is the ability to do the job (purpose) it was designed for. Tasks
can have a reactive or a proactive nature. The memory capability represents the ability to
exchange information between different task instantiations. It usually requires that infor-
mation acquired during the execution of one task instantiation is preserved for an extended
period of time. An example of the use of this capability is an internal blackboard, which
is used by tasks to exchange information.

The sub-capabilities information accumulation and forgetting can further charac-
terize the memory capability. Information accumulation refers to the ability to accumulate
information during a particular task execution, but also to the ability to store and retrieve
that information. Forgetting may have both pragmatic and functional purposes. When in-
formation is accumulated at a high rate, there may be an information or storage overload.
To overcome this pragmatic constraint, information that looses relevance, may be forgot-
ten. A second, more functional, aspect occurs when old information starts to mislead the
problem solver because of changes in the environment.

Learning in the competence model reflects the agent’s ability to become better in its
task execution capability, i.e. skilled by virtue of experience. Maes puts a lot of emphasis
on learning, e.g. learning by being trained [Maes, 1994]. She argues that learning is the
most efficient way for an agent to become competent and trustworthy, above the two
alternative strategies of having the end user program the agent at the one hand or having
a knowledge engineer design the competence model at the other hand.

4.2.2 Communication Model

Besides being able to perform its task(s), an agent is expected to mas-
ter the ability to communicate (social competence cf. [Gaspari and Motta, 1994,
Wooldridge and Jennings, 1995]). Communication implies interaction and interaction
implies sending and receiving messages. Messages are expressed in an Agent Commu-
nication Language, such as FIPA-SLO [FIPA, 2002i]. Protocols prescribe the sequence
of messages. The vocabulary used in messages is defined in message content ontolo-
gies [FIPA, 2001].

Next to message exchange, communication also includes interpretation of the mes-
sage, validation that a message has been correctly interpreted and taking corrective mea-
sures. It is argued that communicating agents use languages comparable to a knowledge
level of abstraction [Gaspari and Motta, 1994, Bradshaw, 1997]. This means that agents
use communication primitives which support the use, request and supply of knowledge
independently of implementation-related aspects.

The communication model is responsible for the following capabilities, interac-
tion, converse! and ontology handling. Interaction refers to a situation where two (or

By converse we mean “talking” with other agents.

4.2. The Five Dimensions 79

more) agents get in contact to exchange information or requests. The message is the typ-
ical vehicle for interaction. It stands for the total package which is exchanged between
agents in an interaction. Converse is seen as a small process, which may involve one or
a small number of interactions, in order to accomplish a shared understanding of the in-
tention of the originator of the conversation. Interaction can be further specified by the
sub-capabilities generate message, send message, receive message, parse and verify
message syntactically and interpret and verify message semantically.

Generating messages involves the creation of new messages upon demand in or-
der to send messages to external actors (such as information sources, others agent and
users). Sending messages is the ability to engage in an interaction as the taker of the
initiative. Receiving messages is the ability to engage in an interaction for which the
initiative was taken by another actor. Parsing or syntactic verification involves verifying
whether the format of an incoming message is understandable. Interpretation or semantic
verification involves verifying whether the content or meaning of an incoming message
is understandable, and extracting that content from the message. The Speech Acts theory
(cf. [Searle, 1969]) is an example of a theory to attribute intention to messages, which can
be applied for example when negotiating with other agents on the basis of arguments. We
discuss the Speech Act theory in detail in Section 6.3 (p.142).

When a conversation requires multiple interactions between agents, it becomes im-
portant to keep a conversation trace of the ongoing communication. Otherwise, the agent
cannot distinguish an incoming message which is a continuation of an ongoing conver-
sation from an incoming message which starts a new conversation. Ontology handling
refers to the ability to work with shared conceptualizations, see Section 6.3 (p.142) for a
detailed discussion on agents and ontologies.

Learning for the communication model, in its most natural form, would denote the
ability of an agent to improve its ability of interpretation of messages. For example,
when two agents use a partially different ontology, the communication may be initially
very difficult; i.e. each communication requires several interactions to accomplish this
common understanding. The model may gradually improve its communication abilities
by incrementally learning the ontology which is used by the other agents, or by broaden-
ing one’s own ontology.

4.2.3 Self Model

An agent has an identity including a description of its name, goal, state, organizational
role, own capabilities and computational location. If an agent moves from one server
to another, we would assume it to be still the same agent. This implies that the physical
process that runs the agent cannot be a part of its identity.

The self model entails the following capabilities: introspection, reflection, life cy-
cle management and instruct planner. With the capability introspection we refer to the
ability to inspect or inform about the agent’s global status: what is the list of the agent’s
current task instantiations, what is the status of those task instantiations, what are the
agents goals, capabilities or objectives, what is the agent’s current occupation, abilities,
experience, memory, etc., see also [Maes, 1986]. With reflection we refer to the agent’s

80 Chapter 4. Five Capabilities Model

ability to reason about and to act upon the agent’s performance: e.g. "how well did I solve
this task?”” and ” how can I do this better?”, see also [Maes, 1998].

The life cycle management capability refers to the ability to follow life cycles as de-
fined in 3.4.1 (p.63). For example, in Figure 3.15 (p.63), a life cycle containing a platform
life cycle, the instruction life cycle and the execution life cycle is given. The self model
knows in what state the agent is and to what states to traverse. With the capability in-
struct planner the self model translates internal goals to instructions to the planner model.
An example of this capability is given in Figure 4.5, where the self model instructs the
planner model to plan a goal.

The self model stands for the agent’s perception of its own being and state (i.e.
introspection). In its simplest form, the self model contains just a collection of ongoing
tasks (monitoring). But for all but the most basic forms of autonomy and problem-solving
more elaborate forms of reflection will become an issue. To give a very simple example,
when an agent receives a request to perform a certain task within a limited time (say 20
seconds), the agent should be able to judge whether there is a fair chance to be able to
perform the task within the given time. This judgment requires reflective reasoning about
the current life cycle state, the agent’s own competence (i.e. tasks from the competence
model), the role the agent plays in an organization and goals of the agent. An agent can
have long term and short term goals. Most of the goals can remain implicit, i.e. be hidden
in the agent’s design. However, in more complex cases agents will have to reason explic-
itly about their goals, trying to reach their goals in the most rational way. A good example
is the Belief-Desire-Intention model [Rao and Georgeff, 1995].

The applied learning method for self perception could make use of the agent’s his-
tory. It could reason about what strategy did fit best a certain problem, what tasks and
methods were applied and whether the identity of the agent changed. Ideally, using re-
flection the agent should be able to change the self model’s behavior in order to optimize
its performance.

4.2.4 Planner Model

One of the most distinguishing features of an intelligent software agent is auton-
omy [Gaspari and Motta, 1994, Wooldridge, 2002]. Whereas an expert system is de-
signed to perform a task in a rational way but anchored in a fixed environment that de-
termines its behavior or process, the software agent’s rationality is extended to a number
of decisions including: whether to perform, when to perform, how often to perform and
how long to perform the task. Furthermore, an agent has control over its own actions and
internal state [Castelfranchi, 1995]. The liberty given to the agent to make decisions that
go beyond deciding about how to do the given task, is called autonomy. When autonomy
is well operationalized, it enables the use of an agent for tasks that require more respon-
sibility, that span a large time frame, or that take place in a less controlled environment.
The planning of the agent’s tasks can be represented by an agenda.

Although autonomy relies heavily on all of the dimensions described in the 5C
model, we consider the planner model to be the component that is most prominent re-
sponsible for autonomous decision-making. The planner model is the model that enables

4.2. The Five Dimensions 81

the agent to reason about the tasks (jobs) on his agenda; i.e. not the generic tasks for
which the agent is designed, but the concrete task instantiations or jobs during the agent’s
lifetime. The planner model is hence intended in a broader sense than the traditional
Al conception of planning, which is constructing a series of activities that can lead the
agent towards a desired goal state, although such a traditional Al planning function may
sometimes be a part of it. Capabilities of the planner model are: task selection, execution
control, time monitoring and emergency handling. Task selection is concerned with the
next task to be executed or continued. Execution control is concerned with starting and
stopping the execution of task instantiations. It can be further refined as follows: Task
launching: starting the execution of a task. Task interruption: putting an unfinished task
on hold. Finally, task reactivation: restarting a task which was put on hold.

For non-instantaneous tasks, time monitoring is an important capability of the plan-
ner model. This capability involves keeping an eye on the clock and triggering clock-
sensitive events. An example of a clock-sensitive event is a task that needs to be executed
every hour. Another example of a potential clock sensitive event is a task that is waiting
for the input from another agent. In uncontrolled environments it may be the case that the
input never arrives, which should not go unnoticed. In such cases, waiting for an input is
a clock-sensitive event.

Emergency handling has to do with dealing with all kind of abnormal circumstances
with respect to the execution of tasks. Typical cases of emergency handling are: Conflict
handling: i.e. handling priority conflicts; Time-bound handling: i.e. detecting and re-
acting to task executions that do not end within the expected time frame (e.g. any-time
algorithms); and Handling long waiting times: i.e. detecting and reacting to tasks that
are on hold for a long time waiting for particular external input that does not seem to
arrive (e.g. life-lock).

Learning in the planning area can deal with getting better in handling emergencies
or surviving in dynamic environments. When dealing with different agents in dynamic
environment, a lot of things can go wrong, for example another agent does not behave
as expected and sends the wrong data. For that reason, the agent should apply strategies
to resolve these exceptions. Another learning strategy is to accumulate data about how
well tasks perform with respect to execution times and success ratio. With this data, the
planner model can inform the self model about the agent’s performance.

4.2.5 Environment Model

Software agents are situated in one or more environments (cf. [Nwana, 1996]) where they
can interact with other actors, such as agents, people, external systems and information
sources. The agent in its simplest form has an environment model that maintains links
to all external actors with which the agent interacts. This can be seen as a kind of world
model. When mobile agents travel in a complex, non-predictable environment, they may
not have an accurate model of the environment. The environment model then becomes a
model of the agent’s perception of its environment (beliefs), rather than a model of the
environment itself. An environment model may finally implement direct interaction with
the environment through sensors and effectors.

82 Chapter 4. Five Capabilities Model

The environment model includes the capabilities: reaction, perceive, actor mod-
eling. One of the properties characterizing an agent is reactiveness, i.e. the ability to
selectively observe its environment (which may be the physical world, a user, a collection
of agents, the Internet, etc) and react [Bradshaw, 1997]. The environment model has to
be able to extract the values of essential parameters from sensor information (perception)
and translate parameter settings into commands of action. Etzioni et.al. describe their
softbot’s interface to the Internet with a strong analogy to a real robot, where the softbot’s
effectors include ftp, telnet, mail, etc., and sensor include Internet facilities such as archie,
gopher and netfind [Etzioni and Weld, 1994].

In its simplest form, the environment model maintains contacts, a set of links to
external actors (i.e. external information sources, other agents, users) or places. In FIPA-
speak, it also contains a register of agent-descriptions. Sometimes an actor may also in-
clude the category of external information sources such as databases, web-pages or other
processes. One step beyond knowing the roles of external actors is keeping a perception
of their nature. User modeling is a typical example frequently mentioned in agent litera-
ture, but the concept can be broadened into actor modeling which also includes modeling
another agent. Many examples of Internet exploring agents work with a model of their
user, in which they store the user’s goals, interests and preferences [Maes, 1994].

The environment model may define for each external actor how the actor needs to
be approached. This can be registered in the form of interaction protocol definitions and
shared communication languages. When agents cohabit within a complex social undertak-
ing, for example as part of a multi-agent system architecture based on complex dynamics
principles, they may not refer to one another directly, but only by virtue of the role each
one of them plays in the total organization. A contract is a set of mutually agreed obli-
gations and related authorizations between two agents about services provided to each
other, together with rules [Verharen, 1997]. The agent has to keep track of its contracts
with other agents.

In a dynamic or open environment, the environment is often not, or not completely,
defined beforehand. In such a situation, the agent must be able to build up its own per-
ception of the environment. This may imply finding out which other agents are around,
which information systems are around, what the role of other agents is, etc. A particu-
lar form of environment learning that is already applied in practice today, is user model
learning. In addition, physical agents have to model their environment in a certain geo-
metric representation of the real world. Also models of other agents can be learned. Two
possible learning strategies can be distinguished; accumulate environment and explore
environment. With accumulate environment, the agent is incrementally learning about
the environment as the agent is interacting with the environment for other purposes. With
explore environment, the agent is pro-actively interrogating the environment to find out
more about it. Mobile agents in an e-commerce application, arriving at a marketplace
to do their business may not have the time to incrementally accumulate all information
about the environment. Therefore, mobile agents can use world models provided by al-
ready present (possibly static) agents.

4.3. The 5C Architecture 83

4.3 The 5C Architecture

Each model in the 5SC model can be seen as a process collaborating with the other pro-
cesses through internal messaging mechanisms, which are standardized cooperation pat-
terns forming the glue between the models. The implementation of each of the five models
is open to the particular application.

A possible approach is the structure preserving design principle. In this approach the
five dimensions of the SC model are mapped onto five parallel Java thread objects in a Java
architecture. At the implementation level, each thread has a to-do list. This corresponds
to the objects with “asynchronous mailbox semantics” design pattern, meaning that every
model is a separate computational process with its own control and has a mailbox (i.e. to-
do box) that it uses to communicate with other processes [Schmidt et al., 2000]. The to-do
boxes play an important role because they serve as a medium between the threads and they
organize the interaction between the different threads. With this approach the computation
that takes place within each threads is de-coupled. The to-do boxes are implemented as
databases with records representing incoming messages. Besides that, every variable is
also stored in a model state database. Forwarding a message from one model to another
means that the sending model adds a record to the to-do box of the receiving model. This
ensures that when the agent or a model (i.e. Java thread) goes down, the state can be
restored. Every action of a model is logged in a log file, for both maintenance reasons and
tracking and tracing of flows within the agent.

In order to illustrate the working of the threads, a workflow has been described in
Figure 4.1. Note that the environment thread has not been illustrated because it does not
play a role in this particular workflow. Imagine the following scenario: A request-message
has been sent by this agent to agent B. As a result, Agent B has sent an response to the
request-message. This message enters the t0-do box of the communication thread?. The
communication thread forwards the message to its parser. The parser, while checking
its syntactical validity, also makes a quick check to see whether this agent is indeed the
intended receiver. For this it uses the identity component of the self-thread. When the
message is parsed into an internal message, the dispatcher puts the internal message
in the to-do box of the self-thread.

The self-thread picks the message from the to-do box, and gives it to the conversa-
tion manager. The conversation manager detects whether the message is a response to
an existing conversation or not. The schema above assumes that it belongs to an existing
conversation. The conversation manager also checks with the capability manager to find
out how to process the message. In this case the content of the message contains an answer
to a previous request, therefore the message is put in the to-do box of the planner-thread.

The planner-thread picks up the internal message from its to-do box and forwards it
to its request manager. Normally, because it is an existing conversation, it should be a
reply to an existing request. The existing request belongs to a waiting job on the planner’s
agenda. The planner takes this job and reactivates it. (If the competence-thread is doing
something else at that moment, the planner marks this job as “ready-to-be-reactivated”.)

2Technically, this is realized by an agent platform.

84 Chapter 4. Five Capabilities Model

Competence Planner
known task request exigting
task| |88 manager \ refuest

known
method todo agenda

7
_,V| parser| |dispatcherk conv existing
manager conversatipn?
agent resource
capacity models models
Sagpose] manag:
‘| Eé do | identity | [todo|
S~—L—— — 4
Communication , Self Environment
message receiver ok
[]
Figure 4.1

Workflow of the five Java threads showing how an incoming message (that contains a
reply on a previous sent request message) is processed.

The reactivated job is put in the to-do box of the competence thread. The
competence-thread picks the job from the to-do box, finds the task from which this
job is an instantiation, and the associated method. Finally, this method is activated. The
environment-thread has not been mentioned in this scenario, because there was already
a conversation going on with a known agent. For the coding part of the agent, typical
OO-inheritance was used.

4.4 International Insurance Traffic

In this section, we discuss a multi-agent system that has been develop using the 5C model.
This system is operational since April 2001 and runs across different insurance companies
to facilitate cross-border claim handling related to “Green cards” [van Aart et al., 2002b].

4.4. International Insurance Traffic 85

Green card traffic is the process where insurance companies exchange data for han-
dling car accidents involving parties from different countries. Every country has a national
green card institute responsible for handling international car accidents. The execution of
green card traffic is handled by commercial insurance companies. 17 insurance compa-
nies in Europe form an international network of claim handling business called Euphoria.
Claim handling works as follows: suppose a Dutch driver gets involved in a car accident
in Germany. The accident is reported to a German insurance company, in this case, R+V
in Wiesbaden (D). To settle the case, R+V will contact its Dutch partner, i.e. Interpolis in
Tilburg (NL). R+V will open a new file containing information related to the incident and
the involved partner. For this R+V has to contact Interpolis to verify whether the Dutch
party is insured and covered. After exchanging details of the accident, the two bureaus
will settle the case, determining who has to pay the costs.

The European Commission has recently enacted the so-called 4th guideline: Fourth
Motor Insurance Directive (Directive 2000/26/EC) -operational from February 2003, that
obliges all EU insurance companies to execute and settle insurance claim submissions
within three months after the date of accident. If they do not, they receive a penalty as
high as the total amount of the costs. Costs range from an average of 6,000 EURO for only
material damage to 100,000 EURO for physical injury. The time needed and personnel
costs involved are not included in these amounts. Interpolis is confronted with 3,500 cases
involving international insurance takers each year. The average settlement time per case
is approximate six months, involving four to six contacts at different times and dates
between foreign insurance companies. The reasons for the settlement duration are due to
the internal bureaucratic process of the insurance companies.

The problem is that all systems (back-offices) used by insurance companies are het-
erogeneous, in the sense that data is stored and used differently. Information between
these companies is exchanged by hand, meaning that claim handlers within the network
communicate largely by telephone, fax and mail. The first alternative suggested was to
develop a central database in Brussels, where all companies upload their data, and where
every company can retrieve data. One disadvantage of this approach is that every com-
pany has to make mappings from its back-office data to this central database including a
synchronization mechanism. The largest objection however is that companies would have
access to data of other companies, which can be used for other purposes. For example,
one company could start to contact customers of other companies, offering their services.
Therefore, the system should offer an arms length relationship between the involved par-
ties: “you can ask me questions, but you cannot have access to my information”.

The second alternative was to give web-based access to every individual back-office.
One problem here is that the definition of a single interface would lead to endless discus-
sion on topics such as: in what language should it be? What functionality should it have?
Furthermore, not all companies are able or willing to submit to a single technical im-
plementation of the interface, and many companies are not ready to be on the Web. The
major drawback is that the information still needs to be transferred manually between
back-offices, because users have to copy information from a web-client into a back office
client. The third alternative was to take an agent-based approach. Every company can
connect to a network of information exchanging agents.

86 Chapter 4. Five Capabilities Model

The KIR system? has been developed by Acklin using the agent metaphor, because
it provides a natural and flexible way to reason about distributed heterogeneous com-
ponents, processes and coordination [Bond and Gasser, 1988]. Business logic is encoded
into the agents, on the one hand to assure the most fluent throughput of the process at
stake; and on the other hand to respect the main business requirement, i.e. confidentiality.
Furthermore, an agent-based system is far easier to extend in terms of functionality than
a classical solution.

4.4.1 Approach

On the level of the business case we had to deal with the following functional constraints:
(1) No transparency in the market, so it should not be possible that agents can query other
agents’ databases to retrieve data without a case, i.e. ensuring the arms length relationship;
(2) The agents should have a high level of robustness, i.e. when the system or a part of
the system goes down for some reason, it should go up without any problems, and go on
with the tasks it was doing at the moment of the crash; and (3) The agents have to operate
within time windows and should have startup and shutdown procedures. The back-office
systems of Interpolis are operational from 6 a.m. to 11 p.m. from Monday till Saturday.
All systems are started up and shut down via batch processes. The reason is that during the
down period of the systems, maintenance can be performed, new systems can be installed
and hardware can be replaced.

From a software engineering point of view we had to deal with the following tech-
nical/political constraints: (1) The agents should work with existing infrastructure of In-
terpolis and its 16 partners in Euphoria; and (2) The agents can have no direct access to
the back-offices. The IT-department of Interpolis did not want to have an “exotic” piece
of software, like agents “touch” its systems, because they do not have control over it.

To meet these concerns and constraints of the business case we applied the fol-
lowing approach. First, the process wherein companies have to cooperate to handle car
accident settlements was analyzed. Second, the activities that the agents should perform
are mapped on agent behavior and agent communicative acts framed in agent sequence
diagrams. Third, an interface was designed to enable the agent to have (controlled) access
to the required functionality, like finding, retrieving, creating and updating records in the
database of the back-office. Finally, all pieces are put together in the KIR system which
is presented in Section 4.4.5.

3KIR stands for KBC, Interpolis and R+V, respectively Belgium, Dutch and German insurance companies
of the Euphoria network.

4.4. International Insurance Traffic 87

4.4.2 Green Card Traffic

The interaction between insurance companies starts after the report of damage caused by
a car accident involving parties from different countries. The assignment of the handling
bureau and paying bureau role in case of an accident involving drivers from different
countries is done with the following rules. The company located in the country where
an accident takes place, is the handling bureau. The company located in the country of
the foreign driver, is the paying bureau. The handling bureau will start the settlement and
sends a request for information (i.e. handling traffic) to the paying bureau. The paying
bureau will respond to the handling (i.e. paying traffic).

Green card traffic starts when the manager of the “foreign claims department” of a
handling bureau receives a report via one of the various channels including call centers,
mail or fax. This report includes basic information (license plate, policy number and date
of the accident), damage forms, police reports and witness declarations. The manager
will delegate it to one of the claim handlers. The claim handler will open a new file in
the claims database and starts identifying the involved parties. First the local party will be
identified, using the green card number and license plate number. Next the foreign party
has to be identified, checking whether this party is known and whether the information
is consistent. For that, the claim handler of the handling bureau will contact its foreign
partner, i.e. the paying bureau, sending green card number and license plate number of
their insurance taker. If the party is not know, the claim handler will report this back to
the manager who will end this process and starts another process that we will not discuss
here. If the party is known, the handler will update the local file and will ask its partner
whether the case is known. If the case is known to the partner it will send the date and
its local claim number (database primary key) including all dedicated information to the
handler. If the case is not known, the partner will create a new file and will also send the
new local claim number to the handler. A part of this process is illustrated in Figure 4.2,
drawn as a standard UML activity diagram.

88 Chapter 4. Five Capabilities Model

Department Claim handler of Claim handler of
manager handling bureau paying bureau

delegate to
claim handler

A 4
paper file create local file)
identify local client)

identify foreign client

foreign clien)
indentification [~ search client data

known?
no

-- -(report)4 - 'I not_known |<- - -(send not 7known>

. known — |[@------------oooo
- J

take over file

send known

update local file

(identify file). ->| accident data |- —)(search file)

create local file

(retrieve data from file)

v
@4——(update local fiIe)(-- ~| dlata |<- -- -(send data)

Figure 4.2

Green Card Traffic Process illustrated in a UML activity Diagram. The swim lanes rep-
resent the job allocation amongst actors. The rounded boxes show the jobs (activities),
the square boxes show the resources, the straight lines show the direction of the sequence
flow (control) and dotted lines show the direction of the resource flow (data flow).

4.4. International Insurance Traffic 89

4.4.3 Agent Collaboration

We mapped the green card traffic process on an agent sequence diagram in AUML in-
troduced by [Odell et al., 2000]. The Green Card operations are illustrated in Figure 4.3
showing the handling and paying role and their pattern of interactions.

Two packages show the two main processes: (1) client identification using green
card number and license plate and (2) case identification, using policy number and lo-
cal claim number. A package shows the “agent interaction protocol” (AIP) used in this
system for enabling the cooperation between the agents, where an AIP describes com-
munication patterns as an allowed sequence of messages between agents and the con-
straints on the content of those messages. Here existing AIPs are placed in sequence to
enable the process as described in Section 4.4.2. The AIPs used are all based on the FIPA
REQUEST-protocol [FIPA, 2002h].

Communicative acts (CA) make up the process between a handling and paying bu-
reau, and replace the interaction between humans by way of speech and handwriting into
communication by agents as illustrated in Figure 4.3. The idea is that the manager of
the department delegates the two identification tasks to the agent instead of a claim han-
dler. The handling and paying bureau are here called handler and payer. It starts with a
REQUEST-message for identification of the client. The identification contains a license
plate and green card number. The payer validates the identification and can respond with:
(1) a FAILURE-message containing not known, which means that the client is not known.
In many cases this is caused by typical errors such as data entry errors in the license plate
or policy number as fed by the paper reports; or (2) an INFORM-message containing a
policy number, meaning that the payer has identified the local insurance taker. Then a
REQUEST-message for identification of the claim is sent. With this the handler asks for all
known data from the file of the payer. The payer can respond with: an INFORM-message
containing a policy number, which means that the payer has either created a new file with
the data and locally know data, or has already created a file for this case. The latter can
happen when the insured party has already registered this accident, before the handler
asks for it. In both cases the payer will send a claim number, which is the key to the file
of the accident.

4.4.4 Interface To The Back-Office System

There are a number of ways to give access to legacy systems. The main concern of the
insurance companies is the security of their data and the stability of their back-offices.
For that we built a transducer in the sense of [Genesereth and Ketchpel, 1994]. In Sec-
tion 5.3.3 (p.105), we discuss the use of a transducer in interoperability problems in detail.
This transducer maps instructions from the agent to the back-office and results from the
back-office to the agent. This approach has the advantage that the agent does not need to
have knowledge of the back-office, it only requires knowledge of the transducer. A more
important advantage is that when the agent has to get access to other back-offices, only
the back-office side of the transducer has to be altered. The transducer at Interpolis has
access to a separate database where instructions and reports are written and read by the

90 Chapter 4. Five Capabilities Model

Handler Payer
Client : :
Identification| | |
! T
identify client D request identification ~
7~
! P failure not_known search policy
notify manager . _
inform policynumber
update file :
Case |
Identification !
identify case request claimnumber | .
search file
if not_known

create new file
|

_ send claimnumber
update file | |

Figure 4.3
Green Card Traffic operation design in an AUML sequence diagram showing patterns of
interaction within the operation. The dotted arrowed lines represent lifelines of positions.
The arrowed lines show interactions and the packages show the applied agent interaction
protocols.

agent. In this way the agent only has indirect access to the back-office, which in the case
of Interpolis is built in “Powerbuilder” using a “Sybase” database.

The transducer between the agent and the back-office enables the agent to execute
a number of actions: (1) validate identification using green card number and
license plate number, (2) search file by policy number, (3) create file using
policy and license plate number, (4) retrieve data from f£ile using policy num-
ber, and (5) update file using policy number and received data.

4.4.5 The Kir System

The integration of the agents and the transducer results in the following architecture as
illustrated in Figure 4.4. As shown every insurance company has installed one agent with
a specialized transducer that is able to route handling traffic and paying traffic. This ar-
chitecture provides not only a communication medium for the designer and builder at
Interpolis and Acklin, but also the end user of the system, the foreign claims department
of Interpolis. The metaphor of actual communicating and reasoning entities using back-

4.4. International Insurance Traffic 91

model function domain

communication validate messages, request identification REQUEST-Protocol
request claim number, inform policy number Green Card Traffic Interactions

competence case identification, client identification, update file transducer

self determine role, instruct planner paying bureau, handling bureau
monitor requests monitor rules

planner task selection, plan tasks agent’s agenda

environment authorize agents authorized agents

Table 4.2

The five models of the KIR agent split up in function and domain. The capabilities of
the agent are decomposed into “functions”. The elements in the “domain” column rep-
resent possible values and value ranges within the agent’s domain related to the agent’s
capabilities.

offices (also called virtual employees) helped to explain the architecture of the system.
Furthermore, it aided to show how and where design choices were made with respect to
the functional and technical constraints.

The KIR agent is a specialization of the 5C model (see Table 4.2) and its accompa-
nied message flows as described in Section 4.3. The communication model is instructed
with the AIPs as described in Section 4.4.3 meaning that it validates incoming mes-
sages from other agents. If it does not understand the agent sends a NOT UNDERSTOOD-
message back. When it does not expect a message, the agent replies with a FAILURE-
message. The self model has knowledge of the two roles of handling bureau and paying
bureau. The planner model will select the appropriate task on the basis of a received mes-
sage or an impulse from the back office system. The environment model holds a list of
agents, i.e. the agents of 17 partners in the Euphoria network that are authorized to inter-
act with the KIR agent. Furthermore the competence model has access to the transducer,
from where it can retrieve and update information from the database of the back-office.

The interaction between the five models of the SC model, in case of receiving a
REQUEST-message is given in Figure 4.5. The process starts when the communication
model receives an external request. The communication model asks the environment
model if the sender of the request is authorized to consult this agent. On the basis of
the register of authorized agent, the environment model responds with “positive”. The
self model receives the content of the external request from the communication model,
which contains in this case a request to identify a client (cf. first step in Figure 4.3). On
the basis of this request, the self model instructs the planner model to plan the goal “client
identification”. The planner model chooses a strategy to perform this goal and instructs
the competence model to perform the job “client identification”. The competence model
will send a message to the transducer buffer and waits for an answer. The answer of the
transducer is analyzed by the competence model and forwarded to the communication
model. The communication model constructs an answer on the basis of the original ex-
ternal request and the result of the competence model and forwards it to the sender of the
original external request.

92 Chapter 4. Five Capabilities Model

update
transducer transducer
buffer retrieve
ha”d_“”g traffl retrieve | |update
paying traffic
email
server
pop3 traffic
il ==
3 smtp traffic ‘ ‘ ‘
KIR agent A back-office

pop3 traffic

i

] smtp traffic
emall

server
KIR agent B

Figure 4.4
The architecture of the KIR system, showing two KIR agents and the coupling to the mail
server and the transducer.

4.4.6 Operationalization

The I'T-department of Interpolis developed the transducer between the database of Inter-
polis and the agent within 30 days. The KIR agent was built in Java in less than 60 days.
The models are implemented as Java thread objects with asynchronous mailbox seman-
tics, meaning that every model is a separate computational process with own control and
has a mailbox that it uses to communicate with other processes [Schmidt et al., 2000].
The mailboxes are implemented as databases with records representing incoming mes-
sages. Besides that, every variable is also stored in a model state database. Forwarding a
message from one model to another means that the sending model adds a record to the
mailbox database of the receiving model. This ensures that when the agent or a model (i.e.
Java thread) goes down, the state can be restored. Every action of a model is logged in a
log file, for both maintenance reasons and tracking and tracing of flows within the agent.
The use of databases ensures robustness and enables the requested daily startups and shut-
downs. The arms length relationship constraint is handled in the environment model and
the self model. The environment model will filter out non-authorized messages, using a

4.4. International Insurance Traffic 93

communication environment self planner competence

agent
authorized?

positive | |
T

'
request to identify client
H plan

client identification

H perform
| client identification

1
result policynumber

S e I et

Figure 4.5

Sequence diagram that represents the interaction between the five models of the 5C
model, implemented as Java threads, showing the process of receiving a REQUEST-
message. This process starts when the communication model receives a message from
another agent. When the sender of the request is authorized to consult this agent, the mes-
sage is dispatched to the self model, which instructs the planner model to plan the goal
“client identification”. After choosing a strategy to perform this goal, the planner model
instructs the competence model to perform the job “client identification”. The compe-
tence model will send a message to the transducer buffer and waits for an answer, which
is forwarded to the communication model. The communication model constructs an an-
swer on the basis of the original external request and the result of the competence model
and forwards it to the sender of the original external request.

(hard coded) list of authorized agent email addresses. The self model has a set of rules
for alerting a claim handler, such as “when an agent will ask for more than ten cases in
the hour” for identifying the querying of the database without an actual case, “when an
agent asks for more than three not existing cases or policies” and “when an agent sends
a messages that cannot be read”, for identifying possible hackers.

The insurance companies made the choice for e-mail as means of message transport
between the agents. The reason was that e-mail functionality is present at all companies.
Another option was the use of middleware, such as CORBA, but the state of the tech-
nology at several insurance companies prevented this. The format of the message is in a
frame based like syntax for expressing feature-value pairs. Strict security is not applied
to keep the hurdle of implementing the agency at a minimum. The system is relatively
secure through the strict application of the format of subject and content, the small num-
ber of e-mail addresses in the system and the fact that the agent only communicates with
agents it knows.

94 Chapter 4. Five Capabilities Model

4.4.7 Extension

The separation of concern principle introduced in Section 4.3 appeals when we further
refine and extend the application. For instance, the EU directive dictates that the proce-
dures should not exceed the period of 3 months. If we want the agents to act consciously
according to this principle, we need to refine the agent by providing it with more explicit
goals (i.e. the goal to succeed with a procedure within 3 months) and the ability to reflect
upon its own performance (i.e. to be conscious about how well it achieves its goals). Both
functions can be realized by refining the agent’s self model. If we also want the agent
to be able to act when it observes that its goal is not met, we can then again extend the
competence model to give the agent alternative methods for executing a job more rapidly.
If alternatively we want to extend the payer role such that they can distinguish between
different types of handlers, for instance handlers from insurance companies with whom
there exists a special agreement to handle the claim in a less complicated manner, we can
refine the environment model of the agent in order for it to be able to make this discrimi-
nation. In that case we also need to refine the agent’s competence model as it needs to have
knowledge of the alternative handling procedures as well. When adding an extra service
(task or goal) to the agent, only the competence and self model have to be changed.

4.4.8 Evaluation

The KIR system presented is an industry-strength system based on the 5C model and
techniques from the agent paradigm. The 5C model enabled the designers of the KIR
system to focus on aspects of the software agent’s intelligence separate from the rest
of the agent’s behavior and implementation taking into account functional and technical
constraints. The KIR system showed that for the design of the two agent roles - the payer
and the handler - the differences in agent capability is solely located in the competence
model and self model; all of the other models are identical. In order to install an agent
at an insurance company, only the transducer to the back-office had to be configured
so that the agent has access to the right functionality and information. Furthermore, the
authorization table of the environment model has to be filled properly.

The final implementation of the KIR system did not use an existing agent frame-
work, such as JADE ([Bellifemine et al., 2001]), mainly because a large number of fea-
tures in JADE were unnecessary for the KIR system. The functionality was too specific to
use a general framework. Furthermore, existing frameworks at the time were not industry-
strength. This means that there were no mechanisms for handling robustness, startups and
shutdowns, and logging. Many of the existing frameworks rely on synchronous connec-
tions over TCP/IP. Insurance companies are very hesitant to let third parties make such
connections from outside their internal networks, and some might even not be able to do
so. The least common denominator used by every partner in the agency is e-mail. The
introduction of the KIR system, immediately resulted in a work pressure release of three
people at Interpolis and reduced the process of identification of client and claim from 6
months to 2 minutes. The 2 minutes here are an estimate of the time needed to send a num-
ber of agent messages using email. The bottleneck is the “polling” time of the involved

4.5. Discussion 95

email servers and the availability and latency of intermediate mail services.

4.5 Discussion

The 5C model can be used to understand and explain the added value of agent technol-
ogy to a range of people involved, including software engineers and business managers.
As such, the model can be a vehicle for designing and developing an intelligent software
agent as a constituent of an agent application. The strength of the agent paradigm com-
bined with the simplicity of the application design acted as an eye-opener. Firstly, the
user (customer) has given the green light to develop and implement the KIR system at a
European level. Secondly, the user has become a strong believer in the value of solutions
in the insurance domain based on intelligent agents. Ultimately, we expect the 5C model
to become the basis for an agent architecture and framework.

In developing of the KIR system, we made a first attempt to describe an agent model
for designing intelligent agents. By “dissecting” the notion of “agent intelligence” into 5
dimensions and by listing the most common concepts, functions and learning opportuni-
ties of each of these, we presented a preliminary model of what it means for an agent to be-
have intelligently. The model can help to focus on individual characteristics of the agent’s
“intelligence” which are quite separated from the rest of the behavior. This explains why
we formulated a conceptual model, rather then a technical framework. However, most of
the issues we list along these 5 dimensions - e.g. “reflection” or “actor modeling” are not
yet resolvable in general terms.

Given the current state of the art, most agents only need a communication model
for interaction with other agents and a competence model to offer their services. The
functionality of the other models is often hardwired. For example, there is not always a
need to reason about the sender of a request. As with web services, most requests are
accepted. Furthermore, simple agents do not need a sophisticated planning functionality,
instead incoming request can be stacked on a traditional FIFO queue. The need to reason
about own goals and identity is also not always necessary. On the basis of requirements
of the overall system, the engineer can decide to combine functionality of the models into
a limited set of models or to preserve the structure of the 5C model.

On the basis of the structure preservation guidelines (see Table 4.3) the designer
can choose to preserve the structure of the SC model or combine or merge functionali-
ties into other models. The consequence of combining functionality of models into other
models is that these models become extended. However, a lot of internal structures could
be reused. Through the development of a series of agent applications along the lines pre-
scribed by the SC model, we observed the ease of reuse of different features of an agent
implementation, facilitated through a separation sof concerns.

Thanks to its dissection of the notion of “intelligent agent behavior” the model
tries to provides handles to focus on individual characteristics of the agent’s intelligence
quite separated from the rest of the behavior. For example, the functionality to receive a
message, couple its content to a task and respond with a message containing the result
of a task. Therefore, future research on the 5C model may include a library on reusable

96 Chapter 4. Five Capabilities Model

model consideration

communication need to interact on the basis of protocols
need to negotiate
ability to speak an agent communication language
ability to handle message content ontologies
need to learn interpretation
competence need to provide services
need to execute tasks
need to reason on domain knowledge
need to connect to a legacy system
need to learn skills
self the agent plays a role in an organization
need to instruct planner on the basis of explicit goals
need to hold agent’s state
need to reason on identity
need to monitor own actions
need to reason on own competences
planner need to behave autonomous
need to deal with several tasks
there are a lot of different jobs
agent needs to operate in dynamic environment
agent needs to learn from its errors
environment other agents need authorization to get access to agent’s services
the agent community is not fixed
need to manage contracts with other agents
need to define new interaction protocols
need to explore environment

Table 4.3
Preliminary guidelines for preserving models of the 5C model in a technical design.

model components.

Several agent architectures are comparable to the 5C model, however most of
these architectures have a fixed structure. This means that all components (or mod-
els) are required in an architecture and that the interaction between the compo-
nents is pre-determined. For example in the RETSINA agent architecture, there are
four modules: Communication and Coordination, Planning, Scheduling and Execu-
tion [Sycara et al., 2003]. The Communication and Coordination module, which can be
seen as a the 5C model’s communication model, is responsible for interacting with other
agents. The Planning module takes as input a set of goals and produces a plan that satisfies
the goals, in the form of a task structure. This task structure is ordered by the Schedul-
ing module. The Planning and Scheduling module show the same functionality of the 5C
model’s planning module. The Execution module monitors the task structure generation
and ordering process and tries to ensure that tasks are carried out in accordance with
computational and other constraints. This module resembles the 5C model’s self model.
It looks like the RETSINA model is designed from a planning and scheduling viewpoint.
There is no functionality described for wrapping around legacy systems, which is han-
dled in the 5C model’s competence model. Furthermore, there is no explicit notion of

4.5. Discussion 97

an environment model. Finally, the RETSINA architecture is designed to operate within
the RETSINA Multi-Agent System architecture®. It would take much time to compare all
existing models with the 5C model. Therefore, we refer to existing surveys dealing with
agent models and architectures®.

Other research on agent models and architectures, such as SOAR and TAEMS? are
integrated into research on multi-agent architectures which is typical technology-driven.
This means that functionalities (e.g. the capabilities of the environment model) are em-
bedded in the multi-agent system infrastructure, instead of in an individual agent. With
the 5C model we have constructed a model from a representation-driven approach that
can be used in isolation or on top of a multi-agent system infrastructure, such as a FIPA-
compliant agent platform. For example in the KIR system, the agents operate in isolation
without any multi-agent system infrastructure. In the IBROW system, see Section 5.3, the
agents operate on top of the JADE platform.

4See http://www-2.cs.cmu.edu/~softagents/retsina agent arch.html.
3See www.cs.rmit.edu.au/agents, http://agents.umbc.edu and www.agentlink.org/resources/clearing-house.
6See www.isi.edu/soar and http://dis.cs.umass.edu/research/taems.

Chapter 5

Interoperation within a Complex
Multi-Agent Architecture

This chapter is partly based on two deliverables of the IBROW project: D15 Brokering in IBROW and
D10 Interoperability co-authored by B.J. Wielinga, A. Anjewierden and W. Jansweijer. The goal of the
IBROW project (Intelligent Brokering on the Web, see http://ibrow.swi.psy.uva.nl) is to develop technolo-
gies for (semi-)automatic selection and configuration of new applications by reuse of existing services.
‘Work on a multi-agent architecture capable of (semi-)automatic reuse of Problem-Solving Methods (PSMs)
is discussed. Using the notion of separation of concerns, specialized agents are defined that operate within
virtual environments. The agents within the architecture collaborate using specialized ontologies and col-
laboration patterns on top of an interoperability structure. A proof of concept is presented that explains the
dynamics of parts of the architecture.

5.1 Introduction

This work addresses the problem of interoperation within a distributed architecture com-
posed of heterogeneous components. The architecture supports the composition of ap-
plications from existing (web) services! that reside on the Web. These (web) services
range from simple information retrieval from databases to knowledge-based consultation
services. Such services can be seen as problem-solving methods (PSMs) for knowledge-
based systems (KBSs) [Schreiber et al., 1999].

Most existing (web) services are distributed, heterogeneous and rigid, in the sense
that they can not easily be configured. For example, the Semantic Web community has
developed the view that it is unrealistic to assume that the content producers conform to
a single standard and ontology. Different languages will be used for competence repre-
sentations. Some service providers will use SOAP and WSDL as technical competence
specification mechanism, others will use RDF(S) and OWL as ontology representation

A web service is a software process that can be invoked remotely using web technology.

100 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

languages. The libraries of services (i.e. PSMs) of the future Semantic Web will be as
heterogeneous as the current collection of search engines and other services that exist on
the Web. Therefore, we need an approach that takes heterogeneity and distribution into
account.

One way to deal with distributed and heterogeneous services is to apply intelligent
software agents. Agents provide a natural way to describe distributed heterogeneous ser-
vices [Genesereth, 1997]. For example, every service can be seen as an individual agent.
Moreover, agent technology provides supporting technology and standards, including
communication platforms, message transport mechanisms, message formats and white
and yellow page services. Furthermore, the agent concept provides a metaphor to reason
about processes and coordination [Bond and Gasser, 1988].

In our view, (web) services can conceptually be represented by agents. In order to
exchange information between different services, agent wrappers can be built, so that
these services can be unlatched to other services. The idea is that services can consult
other services by using agents as intermediate. The rationale behind using agents is that
they put an additional layer on existing services in order to have a common means for
communication and coordination [Genesereth, 1997]. However, interoperability problems
such as different communication languages, datamodels, infrastructures and coordination
mechanisms still have to be solved.

Although web services and agents are already deployed in various domains, many
of them tend to be inflexible: it is not possible to modify the underlying system, nei-
ther configure them for other domains, nor to integrate different services to produce new
functionalities. Furthermore, most web services are heterogeneous and not designed to
interact with other services. For example, Google provides a SOAP interface to its search
services, which can be invoked from within an applicationz. However, the interface itself
is not a service, it still needs to be embedded into another service.

In this chapter, we present an architecture that enables cooperation among agents
capable of configuring and executing new applications composed of existing services
present on the Web. Such an architecture could change the nature of using software from
a centralistic compositional approach to a distributed (agent-based) plug and play process.
The focus is on enabling interoperability among the agents that represent heterogeneous
and distributed services.

This chapter discusses the outcomes of the IBROW project at several levels of detail.
In Section 5.2 we discuss the IBROW approach in general. The Agent Architecture that
supports the IBROW approach is presented in Section 5.3. In order to have the agents
within the IBROW architecture interoperate, we outline the Interoperability Framework
in Section 5.4. Section 5.4 discusses how we implemented the IBROW system. Finally,
we present a proof of concept that explains the dynamics of parts of the IBROW system
in Section 5.6.

2See www.google.com/apis/.

5.2. IBROW Approach 101

5.2 IBROW Approach

Reuse of knowledge and knowledge-based software components has always been an im-
portant goal of the knowledge engineering community. With the explosive growth of the
Web, new opportunities for reuse arise: knowledge-intensive services and components
can be offered on the Web. There are various PSMs, web services and resources available
on the Web that could be linked together to form new applications. Several PSM libraries
with corresponding operational components are now available [Fensel and Motta, 2001,
Benjamins, 1993, Eriksson et al., 1995, Motta, 1999, Motta and Lu, 2000].

The goal of the IBROW project is to develop technologies for (semi-)automatic se-
lection and configuration of PSMs? in order to compose new applications. The idea is that
users interact with a service, specifying the task that an application should perform (i.e.
goal specification). This service is called the broker, i.e. a service that mediates among
demanding parties, such as users, and offering parties, such as PSM providers. Subse-
quently, the broker searches for PSMs on the Web and - if successful - configures an
application that will solve the user’s task [Benjamins et al., 1998].

In order to explain the IBROW approach, we divide its functionality into a number
of spaces. A space is a virtual environment that clusters processes (such as agents and
PSMs) and resources (such as libraries) that are distributed on the Web. Three spaces
are defined: the user space, the broker space and the execution space, see Figure 5.1.
The user interacts with the user space in order to formulate a goal for an application. A
goal can be specified using the Universal Problem Modeling Language (UPML) frame-
work [Fensel et al., 1999b].

The broker space is able to mediate between the user space and the many PSMs
available on the Web, potentially capable of realizing the user’s goal. The PSMs are orga-
nized in specialized PSM libraries, which provide competence descriptions to the broker
space on request. These libraries are not part of the IBROW architecture, because these
are offered by third parties. Therefore we did not define a library space. On the basis
of the goal of the user, the broker space can configure custom-made applications using
existing (heterogeneous and distributed) PSMs. For further reading on a centralized PSM
broker we refer to [Benjamins et al., 1998].

The execution space is able to execute applications based on the output of the bro-
kering process: the application configuration. Execution of applications involves invoca-
tion of PSMs and coordination over invocations of PSMs. The sequence of invocation and
the coordination over it, is defined in a MAP (Multi-Agent Plan). This plan also handles
the input/output mappings between the PSMs involved.

The problem now is that users, libraries and PSMs are distributed on the Web. Fur-
thermore, the user, the broker and the execution spaces are too complex to build in one
system. Therefore, we further separate the functions in each of the spaces into specialized
agents.

3In the remainder, we use a very general notion of PSMs, consequently we see (web) services as PSMs.

102 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

select psm

user configures
KB
application o
input| |output configuration descrlbe:
reports
executes

invokes

execution
space

Figure 5.1

Features of the IBROW approach, showing the user space that mediates between the
user and the broker space to establish a goal to be realized. Based of the goal speci-
fication, PSMs are selected from one or more PSM libraries and are configured into an
executable application. The execution space will execute the application on the basis of
input provided by the user KB.

5.3 Agent Architecture

In this section, we elaborate on the spaces defined above and define specialized agents
that operate within the spaces. The idea is that the agents will not be integrated into one
system. Rather the agents will be organized in a multi-agent architecture, see Figure 5.2.

The use of agents comes with a number of advantages. First, agents are capable of
coupling distributed processes, without centralizing control. Using wrapping technology,
an agent can form an interface between distributed processes, such as PSMs, and other
agents [Genesereth and Ketchpel, 1994]. Secondly, specialized or generalized agents can
easily replace existing agents. The reason for this is that agents do not share a common
memory or common libraries of functions [Wooldridge, 2002]. Therefore, the replace-
ment of one agent does not affect other agents. Finally, the control over the overall ar-
chitecture is distributed. Every agent is responsible for a part of the overall functionality,
because the required integration knowledge can also be distributed. For that reason, the
agent is partially independent of other agents (i.e. autonomous). The remaining depen-
dency between agents can be handled by coordination mechanisms where communication
and flow of information is regulated.

We first discuss the agents that operate within the spaces. Next interoperation is

5.3. Agent Architecture 103

S
configuration

. O| PSM
strategies

_—— — — = = = = -

library
agent

user agent

manager
agent

(
I
I
I
I
I
I
I
I
I
I
I
{

operator 'e) psm
agent ™
Execution
Space)
Figure 5.2

The IBROW multi-agent architecture showing the agents that operate within the user,
broker and execution space. The numbered lines (D - ®) represent collaborations between
agents, which are described in Table 5.3 (p.111).

discussed.

5.3.1 User Space

The end-users of the IBROW system interact with the user space. Since users are dis-
tributed on the Web, user agents are allocated to individual users. The user agent repre-
sents an end-user and hides the complexity of the overall system. Several variations on
the user agent related to the user’s level of expertise are possible, ranging from novice to
expert user agents.

In order to acquire the goal specification and domain knowledge from the user, the
user agent uses an interface. For details on interfaces of the IBROW system we refer
to [Wielinga et al., 2003]. Furthermore, it passes goals to the agents in the broker space
and input to the agents in the execution space. The goal descriptions are in terms of
input and output roles, competence descriptions in terms of pre- and post-conditions, and

104 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

domain ontologies. The goal descriptions can be specified within the UPML framework.
In the remainder, we do not discuss UPML in full detail. Details on UPML, including the
UPML meta-model can be found in [Fensel et al., 1999b, Omelayenko et al., 2000].

Finally, the user agent presents results received from the agents in the execution
space to the end-user.

5.3.2 Broker Space

PSM libraries and the actual broker process are located within the broker space. In order
to locate PSMs, PSMs are clustered in specialized libraries. Every library agent represents
one PSM library and provides PSM descriptions, expressed in UPML, to the broker on
request. Library builders maintain the PSM libraries.

The broker space is responsible for the following tasks:

Maintain interaction with the user space. The user space delegates goals of users to the
broker space.

Retrieve and select competence descriptions of suitable PSM candidates. PSM descrip-
tions (in UPML) will be retrieved from PSM libraries, in order to select the appro-
priate PSMs to accomplish the user’s goal.

Configure and adapapt the selected PSMs. Based on the selected PSMs, an application
configuration is compiled. This configuration explains how the selected PSMs need
to be configured. Possible configurations are the location of input and the required
knowledge bases.

Delegate application configuration to the execution space. The broker space does not
take care of the actual execution of the configuration. Therefore, it sends the appli-
cation configuration to the execution space.

Inspect the outcome of execution space and reconfigure the application configuration.
When the execution space has executed the application configuration, it reports to
the broker space. Based on reconfiguration strategies (such as the Propose Critique
Modify (PCM) algorithm), the broker space reconfigures the configuration (if nec-
essary) and delegates it to the execution space.

The broker tasks can be with different levels of support to the user, ranging from
giving interactive assistance in manual selection and configuration of PSMs, to the fully-
automatic configuration of an intelligent problem solver. For example, manual selection
and configuration of PSMs can be done with the Internet Reasoning Service*, which
supports the semi-automatic configuration of knowledge-based applications on the Web.

We have defined two types of brokers: the Static Broker agent and the dynamic
broker agent: the Reconfigurator. The static broker agent defines the initial application
configuration. After receiving a goal specification from the user agent, it contacts several

“4See http://kmi.open.ac.uk/projects/irs.

5.3. Agent Architecture 105

library agents for PSM selection. From there, it constructs an application expressed in an
application configuration. The application configuration is then delegated to the execution
space.

The Reconfigurator helps the agents in the execution space to refine the configura-
tion of the broker. This works as follows; the execution space reports (Propose) the output
of an application configuration along with the application configuration itself to the Re-
configurator. The Reconfigurator evaluates (Critique) the output based on a set of criteria.
The result of the evaluation is an altered (Modify) application configuration. The modified
application configuration will be sent to the execution space. This process repeats until
the set of criteria is satisfied. Examples of criteria are the quality and the quantity of the
result set. When the Reconfigurator instructs a new configuration, the agents within the
execution space take care of the execution. Otherwise, in case of acceptance, the agents
within the execution space report the result set to the user agent.

5.3.3 Execution Space

The agents in the execution space are Operators and Managers. These two agent roles
are based on the Operator and Manager roles as introduced in Section 2.2. Operators
represent PSMs and are able to configure and invoke PSMs. The Manager is responsible
for coordinating the Operators. The reason to use two agent types for the execution of an
application configuration, is to separate the knowledge for invocation of the PSMs from
knowledge for the coordination over the invocations of the PSMs. The advantage of this
approach is that there is not one single complex agent responsible for the execution phase,
rather a collection of specialized agents. Every agent can choose on an individual basis
how to perform its activities in order to achieve its goals. This point is discussed in more
detail below.
The main tasks of the execution space are:

Translate the application configuration produced by the broker, into a MAP. For every
selected PSM, a PSM provider is selected.

Select a coordination strategy. A coordination strategy provides structures to follow the
control structure of the application configuration (see also Chapter 3). Furthermore,
it regulates the flow of inputs and outputs between PSMs. The coordination strategy
is integrated in the MAP.

Negotiate with PSM providers. On the basis of the MAP, negotiation with PSM providers
is initiated. A negotiation involves the configuration of a PSM. The idea is that
PSM providers (i.e. agents) are relatively independent and have shielded off the
functionality of the PSM, in such a way that PSMs cannot be directly invoked.
Therefore, an explicit session with the PSM providers has to be started.

Execute the Multi-Agent Plan (MAP). Based on the steps in the MAP, the involved PSM
providers are contacted in order to invoke PSMs. The flow of input objects and
output objects is regulated according to the MAP.

106 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

Handle exceptions or failures raised by PSM providers or by loss of information. The
execution environment takes appropriate steps in case something goes wrong. Pos-
sible situations of this type are a PSM provider that does not respond and unpro-
cessable information.

Report the results of an execution to the Reconfigurator. The execution space waits for
the reaction of the Reconfigurator.

In order to construct PSM providers we look at the problems involved in transform-
ing a PSM into an agent, in such a way that it can be coupled to other PSMs providers
and Managers. First, most PSMs are not meant to be on the Web, they form a part of
a larger (centrally controlled) set of KBSs. Secondly, PSMs do not address issues like
communication, session management, multi-user support and web standards. Thirdly, the
interface to a PSM, i.e. the way to configure it and invoke it is not always specified or
clear. Fourthly, more advanced PSMs need configuration before they can be invoked. Fi-
nally, there are complex PSMs that require interaction with the user or other systems.

As a solution, only one agent type could be defined that is able to invoke all PSMs
defined in the application configuration. However, this is not possible because PSMs are
distributed on the Web and PSMs are heterogeneous’. Therefore, we need an address-
ing mechanism, in order to invoke the PSMs. Furthermore, there should be a transport
mechanism to establish a transaction with the PSM. Examples of transport mechanisms
are TCP/IP and IIOP. Secondly, the PSMs are heterogeneous, which means that for every
PSM a separate invocation mechanism has to be defined. An invocation mechanism can
be seen as a communication protocol above a transport mechanism, such as HTTP, SOAP
or CORBA. Finally, the PSMs behave differently, hence for every PSM a separate transac-
tion mechanism has to be defined. Transaction mechanisms deal with how to encode and
decode information from one format to another. Examples of information transactions are
XML to plain text, RDF to SQL and so forth.

Another solution is to introduce a mediator, which is able to operate an individual
PSM and can communicate with other mediators. An (IBROW) Operator is a type of me-
diator that translates agent communication to proprietary instructions. In order to contact
a PSM, a transducer can be applied [Genesereth and Ketchpel, 1994]. A transducer can
map instructions from an agent to a service and vice versa. It can also map in the reverse
sense, that is, instructions from service to agent and results from agent to service. The
difference between the two mappings is that the former is part of a reactive behavior, the
latter is part of a pro-active behavior.

This approach has the advantage that the agent does not require knowledge of the
configuration and invocation of these services. The discussion on the use of annotation
languages, such as WSDL, DAML and OWL, and the use of other deployment techniques
for PSMs is not part of this work.

Given the fact that PSM invocation is complex and that for every PSM a separate
Operator has to be defined, we separated the actual invocation of PSMs, i.e. PSM con-

SThese issues also lead to the conclusion that it is not trivial to define a single API (as in SOAP) for PSMs
that can be placed above PSMs.

5.3. Agent Architecture 107

model functions domain

communication process MAP, report to reconfigurator available message content ontologies
instruct Operators, process reports

competence MAP construction, operator negotiation, application configuration, current MAP
operate MAS, negotiate with reconfigurator ~ coordination mechanisms, result set

self life cycle management, instruct planner “Manager role”

planner task selection, plan tasks agent’s agenda

environment search for operators repository known operators,
consult DF report-to relation with reconfigurator

and user agent

Table 5.1
The five models of the Manager agent (according to the 5C Model, see Section 4.2 (p.76))
representing its capabilities split up in function and domain.

sultation, and the coordination over the PSM invocations. Invocation of PSMs is handled
by Operators. Coordination is handled by the Manager. The Manager coordinates the ex-
ecution of the application configuration by constructing a MAP. This MAP defines the
sequence used to consult Operators that are able to invoke the required PSMs. The next
step for the Manager is to start a negotiation with the involved Operator on the PSM con-
figuration and the Operator’s role in the MAP. The Manager starts the actual execution
by consulting Operators. After the execution of the MAP, the Manager reports its result
to the Reconfigurator.

The idea behind an Operator is that it provides an interface to a PSM. This interface
is written in such a way that a PSM can be consulted as-is. This means that the Operator
takes care of transport of information from and to a PSM, using the appropriate proto-
cols and transactions. Deployment of PSMs can be done in two steps: (1) deployment
of a competence description using UPML via PSM libraries or (2) deployment of PSM
invocation via mediators (called Operators) that have access to PSMs.

The competences and states of the Manager are summarized in a 5C model (ac-
cording to Section 4.2 (p.76)) agent design, see Table 5.1 (p.107). As shown, the com-
munication model interacts with other agents in the IBROW system on the basis of the
available ontologies. These ontologies are discussed in Section 5.4.3 (p.110). The compe-
tence model is able to execute four main tasks: MAP construction, Operator negotiation,
operate MAS® and negotiate with Reconfigurator. The execution of these tasks for a spe-
cific domain is discussed in Section 5.6.2. The management of the agent’s life cycles (cf.
Section 3.4) is handled by the self model, which instructs the planner model. The specific
states and transitions are described in Section 5.4.4. The planner model is responsible
for planning the tasks required to follow the life cycles in the agent’s agenda. Finally,
the environment model is capable of searching (by consulting the agent platform’s DF)
for Operators and store them in a repository of known Operators. Information related to
report-to relations with Reconfigurator and user agent are also stored in the environment
model.

®MAS stands for Multi-Agent System.

108 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

5.4 Levels of Interoperability

In order to have the agents “smoothly” collaborate with each other, we discuss the prob-
lem of enabling Interoperability. Interoperability includes how the agents can commu-
nicate with each other, when they communicate and what message content they use.
In order to study this problem, we apply four levels of interoperability: technical, syn-
tactic, semantic and coordination. The first three levels correspond to traditional inter-
operability structures in agent communication such as [Haustein and Luedecke, 2000,
Bellifemine et al., 2001, FIPA, 2002a]. In these structures the emphasis is on message
transport, languages and ontologies. We added the coordination level in order to regu-
late communication patterns and flow of information. By this, we made a framework to
abstract technique, representation, concepts and strategy to enable interoperability.

Level Element Standard Examples

coordination responsibility organizational role manager, broker, librarian
execution behavior reactive, pro-active
conversation control interaction protocol ~ REQUEST-INFORM

semantic task-method ontology UPML PSM, Competence
message content ontology ~ XSD method, type=xsd:string

syntactic message content language =~ XML <primitive step/>
message envelope FIPA-ACL sender, receiver, content

technical message transport HTTP GET, POST

Table 5.2

The interoperability levels with elements, standards and examples.

Within the framework, we made the assumption that interaction between agents
is based on message passing, meaning that the agents are not capable of, for example,
invoking methods at other agents but have to explicitly state a question in a message
(cf. [Wooldridge, 2002]). In order to enable agents to exchange messages, they need to
agree on using the shared network protocols and message transport mechanisms. These
decisions can be handled in the Technical interoperability (or transport) level. For ex-
ample, all or a selection of agents can agree to use HTTP as information exchange pro-
tocol and TCP/IP as information (message) transport mechanism. Decisions related to
envelope-encoding and message content languages are covered in the syntactic interoper-
ability level, such as agents using XML and FIPA-ACL. Semantic interoperability means
that agents use shared ontologies such as domain ontologies [Fensel et al., 1999b]. Fi-
nally, coordination interoperability implies agents using the shared procedures, such as
“every service has to register”, and sharing the notion of organizational roles, such as
Manager and Librarian (cf. Section 3.4). The interoperability levels are summarized in
Figure 5.2.

Although some topics seem trivial, they are briefly mentioned to indicate the re-
quired steps to enable interoperation. We describe the technology and methods involved in
enabling interoperation in multi-agent systems, to show the complexity of having agents
interact with each other. However, the point is, when using standards, agent designers
only have to deal with the coordination level, which should realize smooth collaboration

5.4. Levels of Interoperability 109
between the agents.

5.4.1 Technical Interoperability

Although it is possible to have a multi-agent system running on one machine, most multi-
agent systems will be distributed over a network of machines. These agents have to
exchange messages with each other, which involves sending and receiving parties. For
that, an addressing mechanism and a message transport mechanism are required. In the
IBROW architecture, we applied the FIPA agent communication standard [FIPA, 2002b].
FIPA uses HTTP over TCP/IP for message transport, meaning that agents use the stan-
dard Internet protocol, available on any web-enabled machine. Using “GET” and “POST”
commands, “MIME encoded” information can be transported. The addressing mechanism
is based on standard URL and IP addresses. For example, the Manager can be addressed
using Manager@gaper.swi.psy.uva.nl. For more details, we refer to the FIPA
specifications [FIPA, 2002b].

The use of standards is important, because standards decrease the amount of new
technology that has to be introduced to agents and agent wrapper builders. Furthermore,
standards such as HTTP, TCP/IP and URLs are well tested and have matured to reliable
and robust means for information and data exchange. A survey on detailed technical agent
communication issues can be found in [Huhns and Stephens, 1999, Labrou et al., 1999,
Bellifemine et al., 2003].

5.4.2 Syntactic Interoperability

When having enabled message transport between agents within a network (i.e. mes-
sage sending), we look how agents can compose and parse agent messages. First, the
format of the message exchanged will have to be known by senders and receivers.
Secondly, the agents need to have agreed on a standard format. Such a format is
defined by FIPA, which provides a vocabulary for message formats. This vocabu-
lary is called FIPA-ACL (Agent Communication Language) which is loosely based on
KQML [Huhns and Stephens, 1999, FIPA, 2002b]. A message written in FIPA-ACL is
composed of two levels: message content and message meta information.

The message meta-information contains the addressing, such as sender and (in-
tended) receivers. Furthermore, it provides information on the actual content of the mes-
sage, such as what language was used for the content and what (message content) ontol-
ogy is to be used to couple meaning to the terms used . Several content languages are
allowed, such as RDF, XML and SL [FIPA, 2002b]

In the IBROW architecture, XML is used as content language, because the bro-
kering service (i.e. a Prolog process) and the Reconfigurator use XML to reason about
application configurations.

The actual content of messages can contain coordination information, such as in-
structions and reports, and information, such as input, support and output objects. These
objects can be encoded and annotated using “MIME-types”. Instructions and reports are
expressed in the XML language. An example of a message is given in Figure 5.17 (p.133).

110 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

5.4.3 Semantic Interoperability

In order to provide semantics to agent communication, ontologies can be
used [van Aart et al., 2002a]. Ontology-based communication is discussed in detail in
Section 6.3. Also the use of ontologies and agents is motivated by the development of
DAML-Services’. The difference between our approach and that of DAML-S, is that we
do not commit to a single representation language.

On the basis of ontology-based communication, a number of specialized ontologies
are defined that are able to manage the diversity of information transportation within the
IBROW system. An alternative is to define one central ontology that is able to cover
all information flows. If all agents would have to commit to this single ontology, the
agents would be equipped with knowledge they do not need to perform their activities. For
example, an Operator would not need to reason about how to retrieve PSM descriptions
from a PSM library. Furthermore, it is unlikely that agents that are built by different
institutes will commit to a single ontology. This point is further stressed by Hendler, who
has predicted that there will not be large centralistic ontologies, rather a lot of specialized
ontologies [Hendler, 2001]. The use of a specialized ontology also adheres to the notion
of separations of concerns. Light weighted and dedicated agents can be built, which can
be easily maintained and even replaced if necessary.

In order to investigate what ontologies are required, we discuss an analysis of in-
teractions between the agents within the IBROW architecture. The interactions are re-
quired to accomplish tasks within the IBROW system, such as “select PSMs from PSM
libraries”. For this particular task an ontology is required that is able to express informa-
tion related to PSM competences such as pre- and post-conditions. An interaction has an
initiator (i.e. sender) and one or more responders (i.e. receivers). Within an interaction,
messages are exchanged that use terms from ontologies. The result of the analysis is given
in Table 5.3.

The ontologies are discussed in detail below. Some of these ontologies are based on
the UPML framework. UPML provides a frame in which information related to compe-
tences and behavior of PSMs can be stored.

7See www.daml.org/services.

5.4. Levels of Interoperability 111

R. Initiator Responder IBROW Task Ontology Exemplar terms
@ user agent broker agent delegate user goal task pre and post condition,
input and output roles
® broker agent library agent select PSMs task-method pre and postcondition,
pragmatics
® broker agent manager agent delegate process primitive step,
configuration role, PSM
@ manager agent operator agent coordinate execution operations consume, produce,
® operator agent user agent acquire input domain input
® operator agent operator agent transfer domain intermediate objects
intermediate objects
® manager agent reconfigurator reconfigure process step, role, PSM
application
manager agent user agent report results domain outcome
Table 5.3

Interactions between agents, associated tasks and ontologies. The relation numbers (@ -
®) corresponds with the collaborations from Fig 5.2 (p.103).

Task ontology The user agent is responsible for assisting the user in formulating goal

specifications. The goal specification is delegated to the broker agent, using the
task ontology. The interaction between the user agent and broker is represented by
directed line @ in Figure 5.2. Within the interaction between the user agent and
broker agent, the user agent uses concepts such as input and output roles and pre-
and post-conditions to specify the goal of an application. The broker agent uses the
goal specification as input to configure an application. For details on goal specifi-
cation we refer to literature on UPML [Fensel et al., 1999b, Fensel et al., 1999a].
On how an application is configured, we refer to [Wielinga et al., 2003].

Task-method ontology In order to configure an application, the broker agent selects

PSMs from PSM libraries. The library agents provide the broker agent with PSM
descriptions. The interaction is represented by the directed line @ in Figure 5.2.

The pre and post conditions concepts are required, to reason about the compe-
tences of individual PSMs. Pragmatics are required to reason about availability,
performance and the configuration of PSMs. These competence descriptions are
maintained by library agents, which can be queried by the broker using the task-
method ontology.

The difference between the task ontology and the task-method ontology is that
the task ontology describes the expected behavior of an overall system, the related
domain and the data required to execute the system. The task-method ontology
deals with domain independent competence descriptions, possible configurations
and pragmatics of individual PSMs.

Process ontology When the broker has completed an application configuration, it is del-

egated to the Manager, see the directed line ® in Figure 5.2. An application con-
figuration is expressed in terms of primitive steps, roles and PSMs. A sequence of

112 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

primitive steps defines the application configuration. A primitive step represents the
work to be done. The work means invoking a PSM using support roles and feeding
input. Support roles are used to express PSM configuration, e.g. what knowledge
base to use. The input and output exchanged between steps are expressed by in-
termediate roles. In fact, intermediate roles are used as transport objects between
different PSMs.

The input of the application is expressed by input roles and the output by output
roles. Every primitive step refers to the configuration of a single PSM. The first
primitive step within the application configuration, defines one or more required
input roles. The output roles of the application are defined by the last primitive
step in the primitive step sequence. The primitive steps between the first and last
primitive steps use intermediate roles (i.e. transport objects) to exchange input and
output roles. The terms used in an application configuration are covered by the
process ontology (see Figure 5.3).

Application
> < output
dinput
<%1 * 1 ..* 1 --*
PSM - + dinput q.)
A Dynamic Role
drefers | Primitive Step |, ¢ output 1
name . — : lue
library |1 dintermediate +| V&'l
4 support %7
Static Role Role
mimetype
representation
type
Figure 5.3

Process Ontology, i.e. the application configuration schemas.

Operations ontology Based on the application configuration, the Manager constructs a
MAP. Terms such as input roles and output roles are translated to input objects and
output objects. These terms are captured in the operations ontology, which is based
on the task-method ontology for coordination defined in Figure 3.3 (p.48). The
involved Operators are instructed according to the MAP, see the directed line @
in Figure 5.2 (p.103). After instruction, the Manager coordinates the application
execution.

5.4. Levels of Interoperability 113

An instruction, exchanged between the Manager and Operators, contains the terms
consume from to expresses what objects i.e. roles to consume from which Ope-
rator(s). The instructions are part of a coordination strategy as discussed in Sec-
tion 3.2. When applying direct supervision, the Manager instructs the Operators to
report (i.e. forwarding output objects) directly to the Manager. In standardization
of work, the Operators are instructed to report to another Operator. The term dis-
tribute to expresses what objects to distribute to which Operator(s). These terms
are covered by the operations ontology. After reception of the instructions, the
Operators configure the PSM they represent.

When the Manager starts the actual execution, the Operators call the required infer-
ence functions. The outcome of the inference functions will be forwarded according
to the Manager’s instructions.

Domain ontology In order to execute the application, the Operators need initial informa-
tion in terms of input objects from the user agent. The domain ontology describes
the mapping between input objects and information related to the user domain.
The information is stored in the user’s knowledge base (KB). The input objects are
transported using agent interaction as denoted by the directed line ® in Figure 5.2.

When multiple Operators are involved, the Operators transfer intermediate objects
to other Operators. These transactions are denoted by the directed line ® in Fig-
ure 5.2. When the execution is finished, the last Operator reports to the Manager
as denoted by the directed line @ in Figure 5.2. From there, the Manager reports
the outcome to the Reconfigurator (directed line @©). When the Reconfigurator is
satisfied, the Manager will report the output to the user agent (directed line ®). A
part of the trace of the interactions is illustrated in Figure 5.19.

The discussed ontologies are relative small in the sense that they contain a limited
number of concepts and relations. The advantage is that the agents involved only have
to be equipped with dedicated knowledge to reason about their domain. The price of this
decision is that there is redundancy between the ontologies. This could cause additional
effort for the maintenance of the ontologies.

5.4.4 Coordination Interoperability

Above we have analyzed the possible interactions between the agents and the means
to enable these interactions. We will now discuss how the agents can work together in
harmony.

The idea behind coordination interoperability is that agents have agreed to play or-
ganizational roles within a multi-agent system. Examples of roles are Manager, Operator
and Broker. Accompanied with a role is the type of behavior. Among behaviors is reactive
behavior, i.e. the agent will wait until another agent starts an interaction, and pro-active
behavior, which means that the agent will take the initiative to start an interaction in order
to fulfill its responsibilities.

114 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

We discuss the coordination between the agents in the execution space, i.e. the Man-
ager and the Operators. Furthermore, the external behaviors of the Manager and Operators
will be presented.

5.4.4.1 Manager Operator Coordination

The role of the Manager is to coordinate the Operators, including telling Operators how
to perform their work in detail, such as getting the input objects, how to transform input to
output, and to whom to distribute the output. These instructions are part of the MAP that
the Manager composes on the basis of the available Operators and the received application
configuration. We will look at how the Manager and Operators collaborate, see Figure 5.4.

Manager Operator
I I
Instruct : :
| |
instruct D instruct("procedure") ~
7~
| report("not possible") process procedure
notify L in application
reconfigurator L|_| report("done”) <>>_
<
L ... instruct !
other operators ... I
Operation | !
instruct("start operation") <!
start operation L_l activate job
> report("failure”) in application
notify
reconfigurator P report("result") X
L™ |

Figure 5.4
Sequence diagram showing the collaboration between the Manager and an Operator.

The idea is that the Manager first instructs the Operators with the use of an
instruction. With an instruction, the Manager can implement a coordination mecha-
nism. Next the Manager will request for actual invocation of PSMs. The two packages in
Figure 5.4 show these two steps, i.e. instruction, and start operation.

The first step is instruction, which has as the intention to configure the PSMs and the
data flows between Operators. This works as follows. The Manager will send a request
to an Operator containing an instruction. Such an instruction contains the following four
items.

5.4. Levels of Interoperability 115

1. From what agent to consume its input. For example, Operator B needs input from
Operator A.

2. What PSM to invoke. For example Operator A will have to invoke a PSM which
can be a Prolog function.

3. Configuration of the PSM, i.e. the coupling to a domain, which is in most of the
cases a knowledge base.

4. To what agent to distribute its output. In case of centralized coordination, this will
be the Manager. In case of decentralized coordination, it will be another Operator.

When the Operator has received the Manager’s instructions, it will try to configure
its PSM. The Operator can respond with a report containing:

1. not possible, which means that the Operator cannot get access to the requested
PSM or the PSM is not available.

2. done, meaning the instructions are processed and the PSM is configured.

The next step of the Manager is to start the actual application execution, i.e. the
MAP operation. For this the Manager will send a request to the Operator containing the
Jjob to be performed and the required input. The Operator can respond with:

1. failure®, meaning that the execution of the job failed, i.e. an exception raised by the
PSM itself. For example, there could be something wrong with the received input.

2. result, containing the output of the PSM.

The collaboration described above is of a simple kind. More elaborate collabora-
tions where the Manager and Operators go in negotiations are subject for further research.
The aim of this collaboration is to show how the four interoperability levels fit on each
other.

The next two sections will describe the individual behaviors of the Operator and
Manager that implement this collaboration.

5.4.4.2 Operator Behavior

In Section 3.4.1, we introduced the behavior of an Operator, which consists of a com-
position of three life cycles, i.e. the platform life cycle, the application life cycle and the
execution life cycle. For the Operators in the IBROW architecture, we adjusted the three
life cycles to: platform life cycle, the application life cycle and the PSM invocation life
cycle. The PSM invocation life cycle is a specialization of the execution life cycle. The
behavior of the Operator is illustrated by means of a pseudo state diagram in Figure 5.5.

8The difference between the “not possible” and “failure” report is that “not possible” means that it is not
possible to invoke a PSM. The term “failure” indicates that it is possible to invoke a PSM, however that in
execution time, the PSM has triggered an error message.

116 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

—_ — —_— — —

send) receﬁ}e L
instruction

register

send

PsSM

send
deregister

Figure 5.5

Pseudo state diagram showing states (rounded boxes) and transitions (arrowed lines) of
the three life cycles of the Operator’s behavior within the IBROW architecture. This dia-
gram is a specialization of the diagram in Fig. 3.15 (p.63).

The platform life cycle is the same as the platform life cycle described in Sec-
tion 3.4.1.

The application life cycle starts when the Operator receives instructions from the
Manager. The Operator will move to the configuration negotiation state.
From this state, the Operator will try to configure the PSM, the Operator represents. If
successful, the Operator will be part of a (larger) application and will wait until it can en-
ter the PSM invocation life cycle. If the configuration fails, the negotiation will be aborted
and the Operator will leave the application life cycle. Otherwise, the Manager will report
to the Operator that the application execution is terminated. In this case the Operator will
reset the configuration of the PSM and leave the application life cycle.

The PSM invocation life cycle will start, when the PSM is successfully configured
and when the Operator has acquired input for the PSM invocation. An Operator can ac-
quire input on a re-active and pro-active manner. These two modes depend on the instruc-
tions received by the Manager. Given the acquired input, the Operator will invoke the
PSM it represents. The result of the PSM will be distributed according to the instructions
of the Manager. After output distribution, the Operator will go back to the part of
application state.

5.4.4.3 Manager Behavior

In Section 3.4.2 (p.64), we introduced the behavior of a Manager, which consists of three
life cycles, i.e. the platform life cycle, the configuration life cycle and the execution life
cycle. For the Manager in the IBROW architecture, we adjusted the last two life cycles
to: MAP configuration life cycle and MAP execution life cycle. The pseudo state diagram
for the behavior of the Manager is illustrated in Figure 5.6

The MAP configuration life cycle starts when the Manager receives an application
configuration from the Broker. The Manager will recruit Operators by consulting the
agent platform’s AMS and DF to search for relevant Operators. When a set of candidate

5.5. Implementation 117

—_— — —_— —_— — — —

applica
configu

send
register

succesl

send
modify,

| —_— = —
{ start N

send operation I

deregister

/

Figure 5.6

Pseudo state diagram showing states (rounded boxes) and transitions (arrowed lines) of
the three life cycles of the Manager’s behavior within the IBROW architecture. This dia-
gram is a specialization of the diagram in Fig. 3.16 (p.64).

Operators is found, the Manager will start negotiations with the Operators. In case of suc-
cess, the Manager will enter the MAP execution life cycle. Otherwise, the Manager will
report to the Reconfigurator. From the wait for Reconfigurator response,
the Manager can leave the MAP configuration life cycle or can receive a new configura-
tion.

In the MAP execution life cycle the Manager will start from the configured MAS
state of the MAP configuration life cycle and will start MAS operation by sending job
requests to involved Operators. When the MAS operation has been finished, the Manager
will report the results of the multi-agent system (MAS) to the Reconfigurator.

When designing a 5C agent, using the internal and external behavior, the self-model
would contain the role and the goals of the agent. The planner model would contain re-
active and pro-active behavior in order to follow the life cycles. Interaction between the
agents, including the technical, syntactic and semantic interoperation, could be handled
in the communication model. The environment model would contain models of the roles
of other agents.

5.5 Implementation

In this section, we discuss how the agents within the execution space are implemented.
Given the conceptual description of the agent components and behaviors we discuss how
pieces of the agent architecture can be implemented. With this implementation, we have
performed a number of experiments, which will be discussed in Section 5.6.

The main challenge is to implement agents that can operate in a distributed envi-
ronment. However, this is not the only challenge we have to face. In fact, we also need
to address the problems related to agents running on several machines that are distributed

118 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

within a (possible) large scale network. Another challenge is set by the need to test and
debug the agents, separately and in combination. For example, there is no possibility of
a desktop GUI for every individual agent. In the remainder, we first discuss the applied
technology set, i.e. the tools and technology that are used as the basis for the IBROW sys-
tem. Next, we present the implementation of the basic IBROW agent, which is the parent
agent of the Manager and Operators. After that, we discuss the agent log, which is used
to store communication traces and agent activity log. Finally, we present inspection tools
that can be used to post-mortem inspect the dynamics of the agents within the system.

5.5.1 Technology Set

Below, we describe the basis of the IBROW implementation and we discuss the tech-
nological solutions we have applied, in order to address two important problems: the
development of agents and the development of PSMs.

5.5.1.1 Agent Development

An important enabling factor for the development of multi-agent systems is constituted by
the existence of a number of agent-oriented toolkits® that natively provide basic services
such as communication, life cycle management, yellow pages and so on.

In the IBROW system, we applied a popular agent toolkit: JADE (Java Agent DE-
velopment framework) [Bellifemine et al., 2001]. JADE is a software framework that sim-
plifies the implementation of multi-agent systems through middleware that complies with
the FIPA specifications, a library of classes that developers can use or extend while cre-
ating agents and a set of tools that support the debugging and deployment phases. JADE
agents communicate by exchanging messages in compliance with the FIPA ACL lan-
guage. Furthermore, JADE supports the AMS (Agent Message Service) and the DF (Di-
rectory Facilitator), which represent the white and yellow page for agent (service) discov-
ery.

Given the already existing basic agent libraries, we have built the IBROW agents
on top of the JADE toolkit. The agents were developed in Java (JDK 1.3) and deployed
as Linux services. This means that the agents can be remotely started, suspended and
stopped.

5.5.1.2 PSMs

Several PSMs are available as Java libraries (i.e. Java packages). Examples are data trans-
fer, database access, parsers and composers and content grabbing. PSMs for data transfer
include FTP, HTTP, EMAIL clients and repositories. Amongst PSMs for Database access
are standard JDBC (i.e. Java version of ODBC) couplings for several commercial and
open source database implementations. Several packages are available for parsing and
composing, such as javacc and Document Object Model (DOM)'°. With these packages,

9See www.agentlink.org/resources/agent-software.html.
10See www.sun.com/products/JavaCC and http://xml.apache.org/xerces2-j.

5.5. Implementation 119

parsers for RDF and XML can be applied. In order to fetch information from web pages,
WebL can be used'!. WebL is a scripting language that enables Java programs to extract
information from web pages. For example, a WebL script to extract information from the
search engine Google is given in Figure 5.7. In fact, WebL is an example of a wrapping
technique and is more useful than the interface that Google offers, because it can easily
be altered to query other web services.

var result;
var page = GetURL("http://www.google.com/search",
[. g=searchterm, bntG="Google+Search", hl="en", num=5.1]);

// Check no div
var testDiv = Elem(page,"div");
if Size(testDiv)>0 then

// Links are the first A inside any P inside the first (and only) div tag
var paras = Elem(page, "p") directlyinside Elem(page, "div") [0];

// Process the anchor tags
every para in paras do

var hrefs = Elem(para, "a") directlyinside para;
result.append (hrefs[0] ["href"]);
end;
end;

return result;

Figure 5.7

Example of a wrapping technique: WebL script to query the search engine Google within
an application. The script uses the variable searchterm as input, which is a search query.
The variable result contains a list of urls found .

The problem is that many PSMs are distributed and heterogeneous in terms of in-
put, output roles and behaviors. In order to have an Operator representing one of more
available PSMs, the Operator should have access to it. A solution is using PSM wrappers
and PSM transducer (cf. [Genesereth and Ketchpel, 1994]), which can mediate between
a PSM and other agents. The transducer is capable of accepting messages from agents,
translating them into the PSM interaction protocol and consulting the PSM. After the
response of the PSM, the PSM transducer translates the response into the agent commu-
nication language and sends the resulting message to other agents. The advantage is that
no knowledge of the PSM other than its interaction behavior is required and is therefore
useful when the code for the PSM is unavailable to the Operator builder or too difficult to
modify.

When the code (i.e. methods and calls) and state (i.e. data structures and knowledge
bases) of a PSM are available, a PSM wrapper can be applied to directly examine and
manipulate the PSM. Wrappers are more efficient than transducers, because there is less
serial communication. Both methods are supported within the IBROW system.

An example of wrappers and transducers for a specific domain is given in Fig-
ure 5.18 (p.134).

1See http://research.compaq.com/SRC/WebL.

120 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

Several off-the-shelf components are used as the basis for the implementation of the
IBROW system. The most important reason is that when pursuing web and agent stan-
dards, components that already comply to these standards should be used.

5.5.2 Agent Implementation

All agents within the IBROW system are extensions of the IBROW agent. Within the
IBROW system, there are agents developed in Prolog, mainly as transducer of PSMs writ-
ten in Prolog, and agents developed in Java. In the remainder we focus on the Java agents,
which are extentions of the JADE agent class. The JADE agent offers basic message
handling, such as message receiving and sending. Furthermore, it offers a basic plan-
ning mechanism allowing the scheduling of agent behaviors. The IBROW agents offer
services that are related to interoperability, such as life cycle management and message
content ontology handling.

In the next three sections, we overview the internals of the IBROW agent, the Ope-
rator and the Manager.

5.5.2.1 IBROW Agent

Message transport is concerned with sending and receiving messages. Sending messages
involves the construction of ACL messages as Java objects. ACL messages are repre-
sented by the Jade class, jade.lang.acl.AcIMessage. An example is given in Figure 5.8.

ACLMessage msg = new ACLMessage(REQUEST);
msg.setSender(this.getAlD());

msg.addReceiver(new AlD(receiver”, "foreign-platform”));
msg.setLanguage("FIPA-SL’);

msg.setOntology("Operations-Ontology”);

msg.setEncoding("String”);

msg.setProtocol(“fipa-request’);
msg.setContent(contentObject.encode("FIPA-SL”, "Operations-Ontology”));
agent.send(msg);

Figure 5.8
Simplified Pseudo code for configuration of an ACLMessage object.

A message is not sent directly to an agent, rather to the ACC (agent communication
channel), which is to be seen as a message transport bus [FIPA, 2002a]. The ACC first
tries to read the ACL part of the message. If the message is not correct, the sending
agent receives a Failure message back. Otherwise, the ACC tries to deliver the message
according to the receiver slot.

Every agent makes use of behaviors. A behavior is a separate process that performs
one or more tasks. Behaviors are implemented by behavior objects, which are used

5.5. Implementation 121

public class Scheduler extends Thread {

public void run() {
while (state==running) {
for every behavior {
behavior.action();

Figure 5.9
Basic behavior scheduling in simplified Java code.

by the scheduler thread'?. In Figure 5.9'3, the basic scheduler process of an agent is
given. As shown, every behavior is activated in a simple round robin scheduling method.
Behaviors can be added and removed during runtime. In Figure 5.10 and Figure 5.11'4
two examples of behaviors are given.

public class PlatformLifeCycle extends Behavior {
private int state = 1;
private boolean finished = false;

public void action() {
switch(state) {
case INIT: agent.addBehaviour(new AMSRegistration());
case AMSREGISTERED: agent.addBehavior(new DFRegistration());
case DFREGISTERED: agent.addBehavior(new DFRegistration());

case MODIFIED: agent.addBehavior(new DFModify());

case DESTROY: agent.addBehavior(new DFDeregistration());

case DFDEREGISTERED: agent.addBehavior(new AMSDeregistration());
case AMSDEREGISTERED: finished = true;

public void update(int newState) {
this.state = newState;

}

Figure 5.10
State machine implementing the platform life cycle.

12 A thread is an active object with its own locus of control. Multiple threads can run at the same time.
13This pseudo code is extracted from the original Java code. “{” represents “begin” and “}” represents “end”.
141n Java the else statement is not used in a conditional statement.

122 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

In the IBROW agent, we have implemented life cycle management as a com-
posite state machine. The platform life cycle state machine is given in Figure 5.10.
In every action, the behavior inspects the current state, and acts accordingly. An
agent has a set of initial behaviors that take care of AMS and DF registration. For
examples of the AMS behavior, the DF behavior and example messages, we refer
to [van Aart and Jansweijer, 2003, Bellifemine et al., 2003]. When a behavior wants to
change its state, it uses the function update.

5.5.2.2 Operator

An Operator is implemented as a subclass of the IBROW agent, which means that its
competences are implemented as behaviors. We discuss one of these behaviors in detail.

As described above, the Manager can choose to follow several coordination strate-
gies. The behavior for an Operator for Standardization of Work is given in Figure 5.11.
This behavior is composed of three functions, action, processProcedure and process-
Input. In the function action the Manager checks if a message is received. If so, the
content of the message is inspected. If the message contains an instruction in the form
procedure (according to Figure 3.3 (p.48)), the Operator has to adjust its configuration,
using the function processProcedure. As shown, the “member”!> activity contains the
name of the activity the Operator has to perform in the current configuration. Furthermore,
the member distribute to contains the address of the agent to whom the Operator has to
send its output to. With this simple mechanism, the Manager can configure Operators to
coordinate themselves following a sequential MAP.

If the message contains an object, the Operator has to perform an activity using
the object, which is handled by the function processInput. In this function the Operator
produces an output on the basis of the activity selected by the Manager. Next, the output
is sent to the agent as specified in distribute to.

5.5.2.3 Manager

Given a broker configuration, the Manager configures a MAS plan. The implementation
of this process is shown in Figure 5.12. the Manager starts a loop over the of primitive-
steps in the received ApplicationConfiguration object. For every primitive step, the
Manager first determines the type of service requested, in this case using the name of the
service. Next the Manager looks for an Operator that offers the service requested in the
primitive step, using the platform’s DF. In this case, we assume that the Operator will
cooperate without negotiation with the Manager. In other cases the Manager will need
to negotiate on attributes like price, delivery time and duration of the execution of the
service. Finally, the Manager adds the service combined with the selected Operator to the
Multi-Agent Plan (MAP).

Given the MAP, the Manager can choose between several coordination strategies,
see also Section 3.3 (p.49). The generateMAP function will be part of a coordination
strategy. As an example, we give the implementation of direct supervision in Figure 5.13.

15 A “member” in Java can be seen as an “attribute” of an object or a “slot” of a concept.

5.5. Implementation 123

class StandardizationOfWork extends Behavior {
private String distribute to;
private String activity;

public void action() {
ACLMessage msg = agent.receive();
if (msg = null){
if (msg.contains(procedure)) processProcedure(msg.content);
if (msg.contains(object)) processinput(msg.content);

-

public void processProcedure(Procedure p) {
this.distribute to = p.distribute to;
this.activity = p.activity;

}

public void processInput(Object input) {
Object output = performActivity(activity, input);
ACLMessage msg = new ACLMessage(INFORM);
msg.addReceiver(distribute to);
msg.setContent(output);
agent.send(msg);

Figure 5.11
Simplified Java code for basic Operator behavior for Standardization of Work. A proce-
dure is a type of instruction according to Figure 3.3 (p.48).

When the direct-supervision behavior is instantiated, the constructor init is called. In this
function, the member of the behavior is configured using the generateMAP function,
which fills the MAP object.

Next, the delegateNextJob function is called, where the “current” activity is se-
lected, in this case the first one, combined with the selected Operator. Using the activity
and Operator information a JOb is constructed, which is sent to the Operator. From here,
the Manager waits for an answer from the Operator. If it contains a report, the function
ProcessReport will be called, that replaces the current-object with the Output object
received from the Operator. Next, the processReport function is called. This process
repeats until all activities from the MAP are delegated to Operators.

5.5.3 Agent Log

In order to be able to gather data about the behavior of the agents within the system,
we implemented an agent log as a centralized database (or a blackboard) where remote
agents (i.e. agents that are not located on the same machine) can store information. This
information, such as communication traces and state transitions, can be used to study

124 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

public MAP generateMAP(ApplicationConfiguration appConf) {
MAP map = new MAP();
for every (primitive-step in appConf) {
String service = primitive-step.getPSM().getName();
Agent operator = DFService.lookup(service);
map.add(service, operator);

return map;

}

Figure 5.12
Simplified Pseudo code for Multi-Agent Plan (MAP) generation on basis of an Appli-
cation Configuration.

the dynamics of the system. The database is developed in MySQL'® and is hosted on an
agentcities server in Amsterdam'”. This dual Pentium-III server runs a Linux distribution.

The technique of logging is also applied to software services, such as web servers,
that run on servers, which are located in remote locations. Using remote login techniques,
log files can be inspected. For example, the web server package Apache'® makes use of
an access log and an error log. The access log records all legal transactions regarding the
web content. The error log records all failed transactions.

The IBROW agents log two types of information: information related to commu-
nication and information related to state transitions. Communication information con-
sists of incoming communication (i.e. messages received) and outgoing communication
(i.e. messages sent). The state transaction information contains data on state transitions
recorded by individual agents. Every log entry is accompanied by a timestamp. There are
several techniques to fill an agent log, such as sniffing. In the sniffer approach, an external
process monitors all communication and external behavior of agents. The problem with
this approach is that not all events, such as state transitions can be externally monitored.
Furthermore, agent engineers might not like to have an external process “spying” their
agents.

Alternatively, (authorized) agent within the system access the agent log themselves.
On the basis of remote connection techniques, the agents have access to the agent log
database, where the agents themselves can choose what to record in the log. Others who
want to inspect the dynamics of the multi-agent system can login to the database and
perform queries on it. Examples of queries are “is every sent message also recorded by
the sending party”, “how many messages did the Manager send to Operators?” and “did
every agent follow the life cycles?”.

The log database contains two main tables, the message table and the state table.

16See www.mysql.org.
17See http://gaper.swi.psy.uva.nl.
18See www.apache.org.

5.5. Implementation 125

public class DirectSupervision extends Behavior {
private MAP map;
private Object current-object;
private boolean finished = false;

public void init(ApplicationConfiguration appConf, Object input) {
this.map = generateMAP(appConf);
this.current-object = input;
delegateNextJob();

public void action() {
ACLMessage msg = agent.receive();
if (msg != null){
if (msg.contains(report)) processReport(msg.content);

-

public void processReprort(Report r) {
this.current-object = r.getOutput();
delegateNextJob();

}

public void delegateNextJob() {
Activity a = map.nextActivity();
if (a==null) { finished=true; return; }
Agent operator = map.getOperator(a);
Job job = new Job(a,operator);
job.setInput(current-object);
ACLMessage msg = new ACLMessage(REQUEST);
msg.addReceiver(operator);
msg.setContent(job);
agent.send(msg);

Figure 5.13
Simplified pseudo code for Manager behavior when applying Direct Supervision.

The message table is modeled after the format of ACLMessages. It contains fields such
as sender, receivers, language, ontology, protocol and content. Other fields include the
direction (i.e. incoming and outgoing) of the messages and timestamps (i.e. when the
message was sent or received). For every message sent, a record is added by the sending
agent and records are added by the receiving agents. By inspecting the table, communica-
tion traces can be followed. An example of a message trace is illustrated in Figure 5.14.
The state table is modeled after a simplified model of a state machine. Every record in the
table represents a state transition. For that, the table contains the following fields, begin-
state, end-state, transition, timestamp, agentname. The transition contains the name
of the event that triggered the shift from begin-state to end-state. Agent can log state

126 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

. Eile Edit View Go Bookmarks Tools Window Help

100 O O Crom iy sy o] ()| < [l

. 4 Home C3Bookmarks . The Mozilla Or. . SUSE - The Lin..

IBROW Agent Console

2003-05-01 1 I Fami version="1.0" encoding="UTF-B7> <broker_output> <primitive_step id="ps21"> <ing
17:15:37 | | Il mrulnern‘kb >extract_features.xmi</obtain_from:> <,|fs|4:pnn_roleb <support_role id="sug
2003-05-01 1 | | <2umi version="1.0° encoding="UTF-8"?> <broker_output> <primitive_step id="ps21"> <ing

| [l |container="kb">extract_features.xmi</obtain_from> </support_role> <support_role id="sug

.-mull:

'ﬁﬁﬂ'\'tflhﬁ "1.0" encoding="UTF-8"7> <broker_output> <primitive_step id="ps21"> €I q
'mlner-"kb':!:lm\:gfeanxes.xni

| <Pxmi version="1.0"

| <?xmi version="1.0" encoding="UTF-8"?> <instructions> <consume_from>manager</cons

=<?xmi version="1.0" Wg="LTF-8"7> +_frome>manager</cons

null>

| <Pxmi version="1.0" SUTF-877>

| <Pxmi version="1.0" encoding="UTF-8"7> <input_role>

| <null>

Figure 5.14
Screenshot o fthe Agent Log showing the results of an query performed on the agent log.
The query iS: “SELECT TIMESTAMP, DIRECTION, SENDERNAME, RECEIVERNAME, PERFORMATIVE, CONTENT from MESSAGE;”.

transitions, so that their internal behavior can be monitored. The moment of transition
can be stored in timestamp. The identification of the agent is stored in agentname.

The agent log is a database where information related to communication and state
can be stored and retrieved. In the remainder we discuss a selection of tools that make use
of the agent log. These tools are part of the agent console.

5.5.4 Inspection Tools

The agent console is a web service that offers a collection of inspection tools. There are
two types of tools, textual and graphical tools. The textual tools present data retrieved
from the agent log in the form of tables. For example, Figure 5.14 is generated from the
tool that enables users to query the agent log, using own SQL statements.

The graphical tools make use of an external web service, webdot'®. This web service

19See www.graphviz.org/webdot/.

5.5. Implementation 127

can generate image files (i.e. Portable Network Graphics (PNG?°) files) that can be pre-
sented in a web browser. The agent console and webdot communicate with a simple graph
language. Displayed objects, such as boxes and ellipses can be equipped with hyperlinks,
meaning that if a user clicks an object, he is referred to a page with more details.

5.5.4.1 Communication Diagram

The communication diagram is a graphical representation of agents exchanging messages.
Using the message table of the agent log, diagrams can be generated that show mes-
sage interchange between a set of selected agents. Agents are expressed by ellipses and
messages by boxes. Every message contains information on the sequence number of the
message, the performative and a description of the content.

In Figure 5.15 a screen shot of a communication diagram is given. As shown, the
user can specify a number of parameters that helps to narrow the size of a diagram. The
boxes i.e. messages, are hyperlink sensitive, which means that they point to another web
page. In this case the objects refer to another inspection tool, the message inspector. The
message inspector shows (textually) all fields of a single record within the message
table, in this case by the user selected.

Several observations can be made from inspecting communication diagrams. Dead-
locks can be spotted, when a message is sent to an agent, but no outgoing messages follow.
One expects the agent to reply to incoming messages to the sender or to other agents. If
not, the communication trace ends at this agent, because the agent is down or it cannot do
anything with the message. Otherwise, the sending agent has sent messages to the wrong
agent, or with the wrong content. One way to resolve dead ends within a communica-
tion trace is having agents always responding to messages, even when they are not the
intended receiver of a message or understand the content (cf. [FIPA, 2002h]).

A life lock can be identified when two or more agents send failure messages stating
that they cannot understand the message. It means that these agents send failure messages
in a loop. These situations can be corrected by using the number-of-hops attribute of
ACLMessages. This attribute counts the number of messages that are sent within a con-
versation. When this number exceeds a threshold, resolving actions can be taken by the
agents involved. When an agent does not send or receive any message, this agent could
be superfluous. In a multi-agent system design, several agents are identified, but in the
execution of the system, agents can be unrequired. A reason can be that the competence
of these agents is not required for the tasks and environment at execution time.

5.5.4.2 State Diagram

The state diagram is a graphical representation of the internal behavior of an agent. Sim-
plified state machines can be drawn, based on the entries of the state table. The boxes
represent states, the arrowed annotated lines represent state transitions. The annotation
represents the identification of the transition. An example is given in Figure 5.16.

20See www.libpng.org.

Chapter 5. Interoperation within a Complex Multi-Agent Architecture

TaskNo Configuration DHrection Timestamp Sender Recetver Comw, 1D Content
] =l = =] [marager = [or =] [manager =l =l
] = Fles | Gl |
(=
* Y
eyt | "-\
| \
L |
-
promes
opeator |
perm—
X »
» [
gt [Tre—
ot | abpr
f |
1 L
|I A .'I
\ \ /
h Wi 1/
iatorm P
proen
Department of Social Sclence Informatics
University of Amsterdamy

I IH
=y

(&l
0 O Doxumant: Dore (0 245 o}

Figure 5.15

Screenshot of a part of the communication between the the Manager and the Operators
The user can specify a number of parameters that helps to narrow the size of a diagram.
The boxes, i.e. messages are hyperlink sensitive, where the hyperlinks refer to a page that

contains containing detailed information related to a message.

From a state diagram, parts of the internal dynamics of an agent can be studied. For
example a deadlock can be identified. A deadlock can be discovered by looking at the
last state of a state diagram. If this state does not represent an end state, it means that the

agent stopped processing at that point.

Bottom Line The discussed selection of tools has the purpose to assist agent engineers
to inspect the dynamics of distributed systems. The graphical tools make use of webdot.
However, webdot is a limited graphical engine. UML notation is limited too. Furthermore,
the layout cannot entirely be controlled. The algorithm behind webdot tries to minimize
the number of crossed lines. The use of link sensitive graphical objects (i.e. objects as

hyperlinks) enables the user to “browse” traces within the agentlog.
The deployment of inspection tools as a web service can assist multiple (distributed)

5.6. Classification of Conference Submissions 129

Acthaty Doagram - Mozl (Buld 1D 20020011 16-5e5E) -ES

. Elle Edit View Go Bockmawks Jools Window Help
s 3

IBROW Agent Console

J Main)f Agent Main\ f Piattorm\ f Tasks'\/ throw Lser Console\ fInspection) /Cantral\ fLog\,
i Messages | Message Cluster | Activity disgram | Seate dagram

TaskNo Configuration Directon Timestamo Sender Receiver Comv. 1D Content

[4] | =]| CICEE = | =l
I = Fiter | Clear |

]

l initiate

AMSRegister
r

AMSRegistered

DFRegister

DFRegistered i

known at platform

received app conf \

MAPConstiuction |

L O Doxument: Dore (0540 secs) == g

Figure 5.16
Screenshot of a part the Manager’s State Diagram.

agent designers to inspect the dynamics of systems at the same time. Another advantage
of a web service is that agent designers do not need to install special software in order to
monitor the behavior of agents.

5.6 Classification of Conference Submissions

Document classification is an interesting domain for reuse of knowledge-intensive ser-
vices and components. In this section, we will discuss a proof of concept that deals with
classification of conference submissions. The focus of the discussion will be on the agents
in the execution space.

A conference the size of ECAI2002 received over 600 submissions. The problem is
that the program chair (PC) had to classify the submissions by hand in order to distribute
them to reviewers. The idea is, to automate this process using a collection of configured
PSMs. A submission for a conference consists of two parts:

130 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

Submission form This form contains the administrative details of the submitter (name,
address, etc.) as well as information about the submission itself: title, abstract and
keywords.

Submitted paper The paper submitted as PDF. For scientific articles, it will contain a
title, abstract, body and references.

The goal of the application is to determine for each submission to which “area”
it belongs. An area is a sub-discipline within the field of the conference. For example,
Machine Learning would be a sub-discipline of Artificial Intelligence and each Machine
Learning paper should be distributed to the reviewer(s) responsible for this area. A sub-
discipline may itself be further decomposed (indefinitely), e.g. Case-Based Reasoning is
a sub-discipline of Machine Learning.

The PC (i.e. end user) has developed an ontology of the sub-disciplines it considers
relevant for the conference and assigns keywords to these. The authors of papers enter a
selection of these keywords in the submission form. Ideally, the keywords are sufficient
to determine the correct area of a submission. In practice, authors often enter multiple
keywords that are inconsistent (i.e. keywords that belong to more than one area) either
because the content of the paper warrants it or to increase the probability of acceptance.

The strategy of the application is to look at multiple information sources to de-
termine the area of a submission. Information sources are: title, keywords (as entered
by the author), abstract and the paper itself. Obviously, reading the paper is more time-
consuming than reading the abstract and if it is possible to derive the area from the key-
words and/or abstract this is highly preferred.

The agents in the execution space start their operation using an application configura-
tion. For that, we will briefly discuss the activities in the brokering space. Next we will
show outcomes of the agents in the execution space.

5.6.1 Brokering

In order to configure the application, PSMs from three libraries were selected: the data
transport library, the document analysis library and the classification library. After iden-
tification of these libraries, the broker retrieves PSM specifications. These PSM specifica-
tions can be matched with the goal specifications using different matching strategies, such
as keyword match, simple task-PSM matching (on the basis of specification), and theorem
proving based matching of competence. In our experiment, we restricted ourselves to the
ECALI broker, which is described in [Wielinga et al., 2003].

The data transport library contains PSMs for P2P and web based file transport, i.e.
download routines based on web and Operating System (OS) standards. The document
analysis library provides PSMs that can perform various tasks related to documents (anal-
ysis, extracting features, reformulation, tokenizing, parsing, identifying phrases) '. The
PSMs have been designed in such a way that the output of one PSM can be used as

21See www.swi.psy.uva.nl/usr/anjo/home.html.

5.6. Classification of Conference Submissions 131

the input to another component provided that the ontologies match. The PSMs can han-
dle various representations, such as PDF, HTML, XML and plain text. The classification
library (the IRS??) contains PSMs that can perform classification. These PSMs can be
configured with a classification ontology, such as the Al classification taxonomy. Every
PSM from the library is equipped with a PSM wrapper or PSM transducer, with which
Operators can consult the PSMs.

Step PSM Library Features Description

1 select-submission data transport input=location select a submission from location
output=document
language=JAVA
coupling=wrapping

2 extract fields document analysis input=document select relevant fields and values
output=fields
language=Prolog
coupling=transducing

3 extract-features document analysis input=fields construct features
output=features
language=Prolog
coupling=transducing

4 classify classification input=features classify features into a class
output=class
language=Prolog
coupling=transducing

Table 5.4

Application Configuration for the ECAI application. This table is extracted from the orig-
inal application configuration produced by the Broker, expressed in XML, in order to
increase the readability. The bold values in the features column represent the initial input
(in row 1) and the final ouput objects (in row 4).

The remainder of this work will describe how Operators are organized and managed
in order to classify a bulk of scientific submissions for the ECAI 2002 conference in ap-
propriate categories based on an Al classification taxonomy. We will not discuss how the
broker has constructed a configuration, rather how the configuration is translated into a
MAP, how this MAP is executed and the negotiation with the Reconfigurator. The config-
uration for the ECAI application as constructed by the broker is given in Table 5.4.

5.6.2 Execution

In order to illustrate the dynamics of the agents in the execution space, we have organized
this section according to the states in the MAP configuration life cycle and MAP execution
life cycle. The steps in the MAP configuration life cycle are MAP construction, Operator
negotiation, configured MAS, MAS operation and wait for Reconfiguration response.

22See http://irs kmi.open.ac.uk/.

132 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

5.6.2.1 MAP Construction

Based on the application configuration, the Manager will construct a MAP, using the
function as described in Figure 5.12. For every primitive step, the Manager will look for
a suitable Operator, using the agent platform’s DF, construct instructions and put these in
the MAP. The selected Operators and instructions are captured in the MAP (see Table 5.5).

Step Operator PSM Operator Instruction
1 document-obtainer select submission activity=select-submission
input=url

consume from=useragent
output=XMLdocument
distribute to=field-extractor

2 field-extractor extract fields activity=extract fields
input=XMLdocument
consume from=document-obtainer
output=fields
distribute to=feature-extractor

3 feature-extractor extract features activity=extract-features
input=fields
consume from=field-extractor
output=features
distribute to=classifier

4 classifier classify activity=classify
input=features
consume from=feature-extractor
output=class
distribute to=manager

Table 5.5
Multi-Agent Plan for the ECAI application. The original Multi-Agent Plan is expressed
in XML.

In our experiment, we have chosen to let the Manager coordinate the multi-agent
system using “standardization of work”. Using this coordination strategy the Manager
can delegate the control over the operation to the Operators (see also Section 3.3 (p.49)).
Given the MAP, the Manager will start negotiations with the Operators.

5.6.2.2 Operator Negotiation

As described in Section 5.4.4.1, the Manager will start negotiations with Operators after
construction of the MAP. Given the MAP, the Manager will inform the involved Operators
on the basis of instructions how to act. After reception of the instructions, the Operators
will adjust their behavior according to these instructions.

The Operators use the instructions to configure their internal behavior, as described
in Figure 5.11. The distribute-to term tells the Operator from which agent, what object
to expect. For example, the agent document-obtainer will have to use the object location
of the type URL as input for its PSM wrapper to invoke the PSM select-submission. The

5.6. Classification of Conference Submissions 133

output (i.e. an XML document) of the PSM wrapper of the PSM will be sent to the agent
as specified in the distribute-to slot. An example message is given in Figure 5.17.

(REQUEST
:sender (agent-identifier :name manager)
:receiver (set (agent-identifier :name document-obtainer))

rencoding String
:language FIPA-SL
:ontology Operations-Ontology
:protocol fipa-request
:content ((action
(agent-identifier :name document-obtainer)
(Instruction
ractivity "Select Submission”
:consume (agent-identifier :name useragent)
:distribute (agent-identifier :name field-extractor)
:domain "http://ibrow.org/documentClassification.rdf")))

Figure 5.17

Example message, involving the Manager sending a message to document-obtainer con-
taining an instruction. The instruction explains to the the document-obtainer that it should
get its input (i.e. a URL referring to an PDF document) from the user-agent, that it should
configure the PSM to the domain DocumentClassification and that it should distribute
the output (i.e. a XML document containing the features of the PDF document) to the
field-extractor.

5.6.2.3 Configured MAS

The Configured MAS is illustrated in Figure 5.18, which is arranged cf. the MAP in Fig-
ure 5.5. This diagram also includes the Operator negotiation, as described in the previous
section. The lines of communication between Manager and the Operators as illustrated by
numbered line @ in Figure 5.2 resemble the lines of communication in the sequence dia-
gram for Standardization of Work in Figure 3.11 (p.58). As shown, the type of interface
between the agents and the PSMs is wrapper or transducer cf. Table 5.4.

5.6.2.4 MAS Execution

The next step of the Manager is to start the execution by sending the message “start
operation” to the Operator: document-obtainer. The document-obtainer will ask (using a
REQUEST message) the user agent to have the user to specify a location. The user agent
responds (using an INFORM message) with the answer “URL”. Document-obtainer will
use its PSM wrapper to invoke the PSM select-submission, using the object URL. The

response of the PSM wrapper is a collection of documents that contain submissions?3.

231n order to illustrate the process, the list only contains one url.

134 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

[user agent] [broker agent] [reconfigurator]

"adjusted

"application application

sQnfiguration”

("url" [manager Execution Space
I agent] |
! "class" |
! "instructions" "instructions" !
! I
I \ |
I [document [feature |
i obtainer]/ @) @ extractor] extractor] |
! I
|) " " |
| document" "fields" features |
: "url" "class" :
' |
! [<<wrapper>>| [<<transducer>>| [<<transducer>>| [<<transducer>>]| i
\ [+ 1 L l 1] L 1 [1)

<<psm>> <<psm>> <<psm>> <<psm>>
select extract extract classify
submission fields features

Figure 5.18

(Pseudo) Deployment diagram of the execution space (see also Figure 5.2 (p.103)), show-
ing agent configuration according to the Multi-Agent Plan described in Table 5.5 (p.132).
The labels annotated with [...] represent agents and ”...” represent objects.

The document-obtainer will send the documents one by one to the field extractor.
The field extractor will activate its PSMs and send its results to the feature-extractor. The
feature-extractor will forward its results to the classifier, which will on its turn forward
its results to the Manager. The Manager will collect all results from the classifier.

The communication traces of the states Operator negotiation and MAP execution
are illustrated in Figure 5.19.

When all documents are classified, the Manager will construct a report containing
the application configuration and the result set.

5.6.2.5 Wait for Reconfiguration Response

Given the result set, the Manager will start a negotiation with the Reconfigurator. This
negotiation is an instantiation of the FIPA ContractNet protocol. The Manager will PRO-
POSE the report (i.e. the broker configuration and result set) to the Reconfigurator.

The Reconfigurator can respond with an ACCEPT-PROPOSAL or REJECT-
PROPOSAL. An ACCEPT-PROPOSAL means that the Reconfigurator is satisfied and

5.7. Discussion 135

7:inform

field-extractor

8:inform XML document S:request
fields input
useragent
l:request document-obtainer
instructions 6:inform
feature-extractor
url
4:inform
2:request K
start operation
instructions
O:request

manager

instructions

9:inform

features /

10:inform

clgss
3:-reljuest

instructions

Figure 5.19

Communication Diagram from the Agent Log showing interaction traces between the
agents within the execution space. The ellipses represent agents, the boxes represent mes-
sages and the arrowed lines represent the direction of the messages. The messages shown
here are equipped with a sequence number, the speech act (or intention) and the actual
content.

that the Manager can report the results to the user. A REJECT-PROPOSAL means that
the result set did not meet the criteria of the Reconfigurator and the Reconfigurator will
instruct the Manager with an adjusted application configuration. Then the Manager will
reconstruct a new MAP, and the execution process starts over again.

The results of the classification of the ECAI submissions are described
in [Wielinga et al., 2003]. Several runs were required for the Reconfigurator to find an op-
timal configuration. We tried to describe the dynamics of the agents using the inspection
tools of the agent console. As shown, the agents behave according to the “standardization
of work” coordination strategy.

5.7 Discussion
In this work, we discussed a complex architecture in terms of service discovery, life cy-

cles, coordination strategies and service invocation. The notion of separation of concerns
was applied to focus on different aspects of the architecture. Every developed agent offers

136 Chapter 5. Interoperation within a Complex Multi-Agent Architecture

its own expertise such as PSM provider (i.e. library agent), invoker of PSM (i.e. Opera-
tor), coordinator (i.e. Manger), configurator (i.e. the static broker) and reconfigurator (i.e.
the dynamic broker agent).

The intelligent agent metaphor enabled us to describe the services and their cooper-
ation within the architecture as agents when represented by roles and behaviors. A lesson
learned is that using separation of concerns instead of integration into one large mono-
lithic system helped us to cluster heterogeneous services into one architecture. In order to
enable the services (i.e. agents) to interact with each other, we applied common standards
and available technology, such as FIPA compliant communication and procedures, agent
toolkits and web technology.

We described the technology and methods involved in enabling interoperation to
show the complexity of having agents interact with each other. When using standards,
agent designers only have to deal with the coordination level of the interoperability frame-
work. In the coordination level, designers only have to specify collaboration between
agents. Therefore, they do not have to fill in all the levels of the interoperability struc-
tures. However, the collaboration diagrams discussed in this work are of a simple kind.
More elaborate collaborations where the agents can negotiate are a subject for further
research. The design of ontologies for ontology-based communication is discussed in the
next chapter.

There are several alternatives to our approach: one monolithic system, distributed
objects and web services. Using a monolithic system approach all necessary components
and services are integrated into one system. A number of the advantages are: there is a
minimal need for interoperation and there is a central point of success and failure. The
disadvantages are: all components need to be centrally gathered, which is not always
possible, the application will become very complex, components written in different lan-
guages need to be translated or rewritten and only a small number of engineers can work
on the system, due to integrity constraints. When using distributed objects, there is need
for middleware, such as CORBA. The advantage is that objects can call methods of dis-
tributed object themselves, without explicit communication. The disadvantages are that
standardization is achieved on a low level and there is a need for control processes that
coordinate the distributed objects, because objects lack their own control. Finally, every
component can be represented as a web service. The advantage is that SOAP is becoming
a standard that is supported by many development kits. The reason for this is that SOAP is
a light weight protocol that works with existing standards, such as XML and HTTP. The
disadvantages are that web services lack interaction protocols, coordination mechanisms
and the notion of (hierarchical) roles, such as Manager and Operator.

In the submission classification scenario we showed how an application configu-
ration is translated into a MAP. The execution of this MAP showed how PSMs from
different libraries can interact with each other. We had three libraries of PSMs to our
disposal, i.e. data-transport, document analysis and classification. We did not investigate
configuration and execution of services from other libraries, because the libraries were
not available (i.e. only described on paper) or were not accessible (due to technical or
semantic problems).

Using the agent console, we could inspect parts of the dynamics of the IBROW

5.7. Discussion 137

architecture. Despite the limited expressive power of the graphical inspection tools, we
could gain insights into the communication and internal behavior of agents. However,
the control over the agents is still a problem. When testing or debugging a multi-agent
system, it is still difficult to start, restart, stop or suspend agents.

Although we showed some overall behavior (such as configuration and execution)
of the architecture, most of the knowledge and behavior of the individual agents is hard-
wired. In order to have a flexible system, the agents should also be able to detect possible
failures and find individual means (such as applying another strategy) or group means
(consulting other agents) to overcome these failures.

In spite of the use of common standards (such as XML and FIPA) and technol-
ogy we encountered most of the problems in the technical and syntactic interoperability
layers. A possible improvement could be having less strict parsing technology. If a user
makes a typing error, the user agent should be able to detect it and correct it. Furthermore,
failing network connections, server failures and failing communication are inevitable in
a distributed environment. Therefore, the agents should have error handling and fail-over
mechanisms as found in grid computing. For example, if a PSM fails for some reason, an
Operator should be capable to reschedule the execution to another Operator.

We foresee an agent-based market place consisting of provider agents, customer
agents and broker agents. The broker agents deliver an intelligent service that enables
third party knowledge-service reuse, where suppliers provide libraries of knowledge ser-
vices adhering to some standard, and customers can consult these libraries to configure a
knowledge system suited to their needs by selection and adaptation. A customer in this
context is a person/company who wants to solve a particular problem. Users who use the
brokering service simply get results for their requests. It is not of interest for users how
the brokering service acquired the result.

Chapter 6

Message Content Ontologies

In this chapter we address the problem of how agents can handle message-based communication. Our ap-
proach is to look at ontology-based communication, in which the meaning and intention of messages is
specified in message content ontologies. The idea is that agents can share semantics by committing to
shared message content ontologies. We discuss a theoretical framework for message-based communication,
in which we sketch an ideal world where an agent is capable of various ontological operations. A pragmatic
approach is presented, which enables the creation and use of ontologies to support message-based commu-
nication between agents.

A tool is described that assists agent engineers in designing message content ontologies and export it to
Java source code. A case study on Legal services illustrates conversations between agents based on a mes-
sage content ontology. The work presented is partly based on the paper Creating and Using Ontologies
in Agent Communication, published in Proceedings of the Workshop on Ontologies and Agent Systems at
AAMAS 2002. The co-authors are R.F. Pels, G. Caire and F. Bergenti. The case study described is based
on an Agentcities grant project (see www.acklin.nl/agentcities). The “Bean Generator” tool described is
designed by the author and is used by various institutions and companies that work with the JADE toolkit
(see http://gaper.swi.psy.uva.nl/beangenerator).

6.1 Introduction

In this section, we present a layered framework containing a Reference Model for
ontology-based agent communication. Using ontologies in agent communication enables
agents and agent engineers to add semantics to agent conversations.

A traditional distributed system interoperates with other systems by giving these
other systems access to its information retrieval functions. One technique to interoper-
ate, for instance to transfer information between distributed systems, is Remote Meth-
ods Invocation (RMI). Giving systems direct access to other systems’ information re-
trieval functions leads to tightly coupled systems. However, multi-agent systems are
loosely coupled distributed systems, where agents do not have direct access to each oth-
ers functionalities (services). By exchanging messages, agents can access other agents’
services. The messages are not only used to exchange information, but also to communi-
cate on a higher level, such as negotiation about price, instructions and sharable knowl-

140 Chapter 6. Message Content Ontologies

edge [Genesereth and Ketchpel, 1994, Huhns and Stephens, 1999].

Message-based communication can be described on several levels of detail: mes-
sage transport, message encoding, communication languages, message interpretation and
composition [Labrou et al., 1999]. Message transport is involved with agent addressing
and communication protocols. Whether a message is encoded in binary, string or other
format is of concern at the message encoding level. Several agent communication lan-
guages exist, for example KQML or FIPA-ACL.

We focus on the ideas motivating the FIPA standardization, because it is supported
in the agent community'. On top of the agent communication language, FIPA has adopted
the idea of ontology-based communication from [Neches et al., 1991], where the meaning
and intention of message contents is specified in message content ontologies. In order to
share semantics, agents commit to shared message content ontologies. The agent engineer
is free to design and implement the communication model of the agent around message
content ontologies. The only requirement is that the content of messages exchanged com-
mit to one or more message content ontologies. In this case, agents can interact without
having to negotiate about message structure and message content. A similar approach can
be found in Open-EDI [Weigand and Hasselbring, 2001].

The problem addressed in this chapter is defined by [FIPA, 2001] as:

“Despite its crucial importance for guaranteeing the exchange of content in-
formation among agents, (...) a suitable “Reference Model” for ontologies
needs to be established.”

The assumption is that agents share a common Reference Model that provides the
proper semantics in message-based communication. Specific message content ontologies
will be based on this Reference Model. The question is, what such a Reference Model
could look like and how agents can generate and interpret messages that commit to such
a Reference Model.

In the remainder, we give a brief introduction on ontologies. Next, we discuss a lay-
ered framework containing a Reference Model for message content ontologies, in which
we sketch an ideal world, where agents are capable of various ontological operations.
Then, we discuss a pragmatic approach to the Reference Model based on the current
state-of-the art in agent technology, which is applied in a case study on legal services. We
conclude this chapter by a discussion on the two approaches and issues arising from this
work.

6.2 Ontologies in a Nutshell

An ontology is defined by [Studer et al., 1998] as:

! An alternative to FIPA is the Rosetta initiative(www.isi.edu/expect/projects/agents/rosetta.html) and avail-
able technology (See, www.agentlink.org/software). In contrast to FIPA, the Rosetta architecture is based on
middleware, which represents most of the agent’s environment. This means that an agent should be equipped
with an interface to the Rosetta architecture. The drawback of this approach is that the agents are not loosely
coupled to the agent environment.

6.2. Ontologies in a Nutshell 141

An ontology is a formal, explicit specification of a shared conceptualization.
A “conceptualization” refers to an abstract model of some phenomenon in
the world by having identified the relevant concepts of that phenomenon.
“Explicit” means that the type of concepts used, and the constraints on their
use are explicitly defined. (...) “Formal” refers to the fact that the ontology
should be machine-readable. “Shared” reflects the notion that an ontology
captures consensual knowledge, that it is not private to some individual, but
accepted by a group.

According to van Heist and colleagues, ontologies can be classified according to the
subject of conceptualization [van Heijst et al., 1997]. A domain ontology specifies facts
and constraints related to a specific domain. Many domain ontologies exist, such as en-
gineering ontologies [Borst, 1997], mathematical ontologies [Gruber and Olsen, 1994],
chemical ontologies [Ferndndez-Lopezet al., 1999] and medical ontologies such as
Galen?.

A generic ontology is similar to a domain ontology, however the concepts defined
are generic across many fields. Generic ontologies are also seen as upper-level ontology or
top-level ontology [Guarino, 1998]. Examples of generic concepts are object, event, and
action. Upper-level ontologies are produced by the standard upper ontology IEEE work-
ing group, Upper Cyc and Sensus®. An application ontology conceptualizes information
that can be used for a particular application. In Section 6.3.2.1, we describe a number of
application ontologies. This ontology is composed of concepts from domain ontologies
and generic ontologies. A representation ontology provides primitives that can be used
to represent other ontologies. It provides a framework without making claims about the
world. An example is “Open Knowledge Base Connectivity (OKBC)”#, which provides
a uniform model of knowledge based systems based on a common conceptualization of
classes, individuals, slots, facets, and inheritance. OKBC forms the basis of the ontology
construction tool Protégé 2000° [Noy et al., 2000]. Another example of a representation
ontology is the Frame Ontology, which defines concepts in the form of frames or objects,
allowing to describe hierarchies of classes with slots [Gruber, 1993].

For methodologies related to ontology engineering we refer to [Gomez-Perez, 1999,
Noy and McGuinness, 2001].

In the remainder of this chapter, we focus on specific subjects that are relevant
for agent communication. A number of agent communication ontologies are defined that
model these subjects.

2See www.opengalen.org.

3http://suo.ieee.org, www.cyc.com/cyc-2-1/cover.html and www.isi.edu/natural-
language/resources/sensus.html

4Details on Open Knowledge Base Connectivity can be found at www.ai.sri.com/~okbc/.

3See http://protege.stanford.edu.

142 Chapter 6. Message Content Ontologies

6.3 Message Content Ontology Framework

In this section, we discuss a theoretical approach to establish a Reference Model
(cf. [FIPA, 2001]) for message content ontologies. The framework consists of a col-
lection of ontologies, which we refer to as agent communication ontologies. The ba-
sis of these ontologies is the speech acts theory [Labrou et al., 1999, Shoham, 1993,
Bond and Gasser, 1988]. Messages exchanged between agents are annotated with
speech acts, giving messages specific meanings. The theory originates from linguis-
tics [Searle, 1969, Austin, 1976], where it is used to analyze human speech and text. A
speech act is composed of three components: locutionary act, illocutionary act and per-
locutionary act. The locutionary act is concerned with the material generation of utter-
ances. The illocutionary act is concerned with carrying out a speech act. An illocutionary
act itself is composed of an illocutionary force and a propositional content. An illocu-
tionary force can be seen as a performative, such as questioning, negotiating, ordering
and asking to do something. The propositional content is the object of the illocutionary
force, such as problem, price, product or activity. The perlocutionary act is concerned
with the effect an illocutionary act has on the state of the receiver. We focus on the illo-
cutionary force, which we refer to as performative.

Linguists have made a difference between explicit and implicit performa-
tives [Austin, 1976]. Agent Communication languages such as KQML and FIPA-ACL
make use of explicit performatives [Labrou et al., 1999]. Here, every agent utterance (i.e.
the sending of a message) is seen as a speech act, which is composed of a proposi-
tional content and a performative. The structure of a speech act is then of the form
E(I(A)), where E is the explicit performative, I the implicit performative and A the
arguments of the directive®. For example, a message containing an explicit performative
is: promise(deliver(cd)), where promise is the performative (in this case a “commissive,
because the speaker has committed him to a future course of action, c.f. [Searle, 1969]),
deliver the intended transaction and cd the argument.

Most human communication does not explicitly express one of these types of speech
acts. For example, one does not ask a question in the form of:*I direct you to the give me
the price of a CD”, or “I assert the price of a CD to 30 EURO”. In order to come close
to human communication, we will make use of implicit performatives. This means that
we directly make use of a specific performative, without declaring the type of perfor-
matives. The form of an utterance is in the form of I(A)). For example, an utterance
such as (Buy (CD :name “Mahler 17)) is to be read in a first-person present declarative
form [Labrou et al., 1999]. Hence, this message can be read as “hereby, I declare that I
want to buy the CD with the name Mahler 1”.

Concepts such as CD can be found in an existing ontology,
cf. [Cranefield and Purvis, 1999]. Therefore we can reuse existing concepts and re-
lations of these ontologies into our agent communication ontology’. There are several

In more, detail E(I(A)) is the logical representation of a speech act. The actual representation of an
utterance depends on the languages of agent communication (ACL). For example, in SL it is possible to express
multiple performatives in one utterance.

By reuse, we mean reusing one concept and related relations or the reuse of an entire branch of an ontology.

6.3. Message Content Ontology Framework 143

methods to reuse and share ontologies, divided into syntactical and semantic meth-
ods [Gomez-Perez, 1999, Pinto and Martins, 2000]. An example of a syntactical method
(which operates on the symbol level) is the translation of an ontology into another
ontology representation language. Semantic methods (which operate on the knowledge
level), includes merging of one ontology with another and mapping of one concept to
another.

Another important communication theory is conversational interac-
tion [Geis, 1995], which reasons on the use of performatives by conversation members.
In every conversation there is at least one initiator and one other participant. Furthermore,
there are rules that restrict the use of performatives. For example, the manager and
operators in the IBROW architecture (see Section 5.3) engage in interaction in order to
collaborate. In the agent community, these rules are called protocols. Every participant in
a conversation should follow these protocols. In our framework, we couple protocols to
roles. In communication theory this is called role-taking® [Levinson, 1991]. A protocol
can dictate that for every question asked, an answer has to be given. For example in
the IBROW architecture, if the broker asks a question to a librarian, both the broker
and the librarian know what role to take and what performatives to use. So the broker
as questioner sends ask(needed competences) to a librarian. The librarian as agent
questioned, responds with reply(candidate PSMs).

6.3.1 Agent Communication Meta Ontology

The Agent Communication Meta Ontology defines generic concepts necessary for agent
communication: conversation domain concept, performative, protocol and agent role. The
elements of this ontology are not explicitly used in the messages exchanged between
agents. Rather, these elements are used as reference by agents and agent engineers. Agents
can use it to reason about interactions with other agents. For example, when an agent
decides to consult another agent, it can select the appropriate vocabulary, performatives,
protocol and role. When an agent engineer is designing an agent he can configure the
functions of the communication model of the agent.

In order to bind the concepts together, a number of relations are defined: allowed
concept, allowed performative and allowed protocol. The relation allowed concept
means that every performative should contain one or more instances of domain concept.
The relation allowed performative denotes that every protocol contains an ordered num-
ber of performatives. Finally, the relation allowed protocol tells that agent roles (part of
the agent role ontology) should commit to one or more protocols. The subject represented
by metaclasses and relations are illustrated in Figure 6.1.

6.3.2 Reference Model

The four subjects of agent communication are defined into four agent communication
ontologies: conversation domain ontology, performative ontology, protocol ontology and

80ther terms used are feed forward and empathy.

144 Chapter 6. Message Content Ontologies

Agent Communication Meta Ontology

"
«metaclass» «metaclass» 0. < allowed protocol
Agent Role

Domain Concept

lq allowed concept «metaclass» <allowed performative «metaclass»
Performative <> Protocol
{ordered}
0 2.7 1.* 1
% 3 7N
I]
Reference Model «instance» I
] -
«instance»
P o———— e — - 1

Protocol Ontology |

1
|
p-———- 1 | H | 1
Commissive Declarative 1 Query Request 1
! I
) e L ————
L T/ i A i T I
Directive Expressive Representative Auction Negotiate Supervise

Figure 6.1

Agent Communication Meta Ontology and a part of the Reference Model, showing the
four subjects of agent communication: domain concept, performative, protocol and
agent role. The relations allowed concept, allowed performative and allowed pro-
tocol bind the subjects together. The relation allowed concept means that every perfor-
mative should contain one or more instances of domain concept. The relation allowed
performative denotes that every protocol contains an ordered number of performatives.
The Ordered relation enables to describe the allowed sequence of performatives in a
protocol. The relation allowed protocol tells that agent roles (part of the agent role on-
tology) should commit to one or more protocols. The relation between the performative
and the Performative Ontology and protocol metaclasses (from the Agent Communica-
tion Meta Ontology) and the Protocol Ontology (from the Reference Model) are of type
<<instance>>. The elements of the Performative Ontology are discussed in Table 6.1.
In Table 6.2, the elements of the Protocol Ontology are discussed.

the agent role ontology. These four agent communication ontologies form the Reference
Model. The relations between the ontologies are illustrated in Figure 6.2.

The Reference Model is an instantiation of the Agent Communication Meta Ontol-
ogy. The relations between the Agent Communication Meta Ontology and the Reference
Model are illustrated in Figure 6.1. Below, we discuss the agent communication ontolo-
gies in detail.

6.3. Message Content Ontology Framework 145

The "Agent Communication Meta Ontology"
Agent Communication contains definitions for generic subjects
for agent communication:

Meta Ontology conversation domain concepts,
performatives, protocols and agent roles.
N
|
<<instance>> | The "Reference Model" is an instance of
the agent communication model.
| It contains four ontologies based
Reference Model , on the subjects for agent communication.
The "Conversation Domain
Ontology” defines the vocabulary | | Conversation Domain Agent Role Ontology | |The "Agent Role Ontology" defines the
used in the content of Ontology roles agents can play in conversations.
conversations related to a domain.
The "Performative Ontolo%y"
defines performatives based on) . .
the Speech Acts theory, Performative Ontology Protocol Ontology _ The "Protocol Ontology
which are used to indicate defines protocols that are used to
the intention of messages steer messages in conversation.
within a conversation.
<<instance>> :
|
Message Content A "Message Content Ontology” instantiates elements
Ontology from the Reference Model, which are used
by agents to conversate with other agents.

Figure 6.2

The agent communication ontologies represented by UML packages. The dependencies
(i.e. the dashed arrowed lines, which are to be read as “source depends on destination™)
show the relations between the ontologies. The Agent Communication Meta Ontology
defines the subjects for agent communication ontologies: conversation domain concepts,
performatives, protocols and agent roles. The Reference Modelisan instantiation
of the Agent Communication Meta Ontology. The Reference Model makes use of the four
agent communication ontologies. Finally, the Message Content Ontology instantiates
elements from the Reference Model.

6.3.2.1 Conversation Domain Ontology

A conversation domain ontology defines the vocabulary used in the propositional content
of conversations related to a domain. Examples are price, product, answer, question, pro-
posal, offer, name, person and address. Furthermore, it defines the structure of a domain,
for example a product has a price, a question has zero or more answers, an offer is related
to one product, a person has a name and an address.

Several ontologies are available that can be used in the design of conversation do-
main ontologies. Elements of existing ontologies can be imported, adapted or translated
into other ontologies. Several ontologies exists for identifying products in an electronic
commerce applications through product descriptions,such as S95, the United Nations

146 Chapter 6. Message Content Ontologies

Standard Products and Services Codes, E-cl@ss, and RosettaNet’.

6.3.2.2 Performative Ontology

The performative ontology defines performatives that are based on the Speech Acts
theory. The Speech Acts theory is introduced into Agent Communication Lan-
guages to design agent communication as close to human communication as possi-
ble [Labrou et al., 1999]. In traditional information exchange between systems, messages
are only pieces of data [Weigand and Hasselbring, 2001]. In order to create a social effect,
such as creating an obligation, performatives are added to messages. In a traditional set-
ting one service would send a message (CD :name “Mabhler 1”) to a musicshop service,
intending to buy a CD. Both services “know” that when one service sends a reference to
a CD, that it wants to buy a CD. In agent systems, an agent would send the message (buy
(CD :name “Mahler 17)), where the buy performative can be seen as a speech act (the
message is an attempt to perform a transaction between a buyer and a seller).

The idea behind Speech Acts is that sentences can be categorized into particular
types. We follow the classification as suggested by [Searle, 1969], see table 6.1. In this
classification there are five basic categories of performatives (illocutionary forces): Rep-
resentatives, Commissives, Directives, Declaratives and Expressives. Representa-
tives are speech acts that represent some state of affairs. For example, asserting facts about
a domain, such as telling the price of a CD.

Commissives are speech acts that commit the speaker to some future course of ac-
tion. In an economic setting, this can be used to have agents committing to a contract. For
example, promising to perform a job in the future, such as: “at noon, I will buy a CD”.
Directives are speech acts whose intention is to get the addressee to carry out some action.
For example, asking a question related to a domain, such as “what is the price of CD X7”.
Declaratives are speech acts that themselves bring about a state of affairs and which are
spoken by a recognized authority. In order to give a Manager control over Operators, an
Operator has to see a Manager as an authority. For example, an Manager instructs an Ope-
rator how to perform its activities. Expressives are speech acts that indicate the speaker’s
psychological state or mental attitude. For example, one agents “thanks” another agent
for its services.

Several variations of the categorization of Searle exist, see [Austin, 1976,
Singh, 1998, Ferber, 1999]. Also in the Agent Field, specializations of Speech Acts have
been reported. A number of explicit performatives are specified by Haddadi and FIPA,
which can also be used as implicit performatives. Haddadi has defined a library of com-
munication types [Haddadi, 1995]. A selection of these types is: Require, Order, Re-
ject, Ask and Reply. FIPA has specified: Accept Proposal (which can be seen as an
instance of a “representative”), Call for Proposal (directive), Confirm (commissive),
Inform (representative), and request (directive) [FIPA, 2002d]. These performative or
communicative types are either representatives, directives or commissives [Singh, 1998].
For example, the performative inform is supposed to give information and request cor-

9See www.s95.info, www.unspsc.org, www.eclass.de and www.rosettanet.org.

6.3. Message Content Ontology Framework 147

Performative Description Examples
Representative inform the addressee of some state of affairs asserting, concluding, describing
“The price of every CD is 30 EURO.”
Commissives commit the speaker to future course of actionpromising, threatening, offering and vowing
“If you buy 10 CDs, the price is 23 EURO.”
Declaratives “‘representatives” spoken by a recognized marrying, naming, and firing from employment

authority, such as a director or president “I allow this shop to sell CDs.”
Directives attempts by the speaker to get the requesting, questioning and commanding
addressee (or receiver) to do something “What is the price of a CD?”
“Can I buy this CD?”
Expressives express a psychological state greeting, thanking and congratulating

“Thank you for buying this CD!”

Table 6.1
Five basic categories of performatives (illocutionary forces), cf. [Searle, 1969].

responds to a demand for information. In order to allow authority, which is needed to
construct organizational relations such as a Manager-Operator relation, ‘“Declaratives”
are needed. Furthermore, to allow learning based on feedback, the speech act “Expres-
sive” is needed. For example, a Manager can give positive or negative feedback on the
activities performed by an Operator in order to learn the Operator coordination pattern.

6.3.2.3 Protocol Ontology

Next to individual message exchange, agents engage in conversations. Conversations
can be seen as a shared sequence of messages that agents follow [Labrou et al., 1999].
We have expressed the notion of sequencing between allowed type of messages
by the Ordered relation in Figure 6.1. In order to guide conversations, (inter-
action) protocols can be used that restrict the allowed sequence of performatives.
Examples of shared sequences are negotiations [Chavez and Maes, 1996] and auc-
tions [Rodriguez-Aguilar et al., 1998]. The shared sequences of performatives are defined
in the protocol ontology. For example, a directive, such as a question, should be followed
by an representative to answer the question. The Protocol Ontology of the Reference
Model, contains a number of generic protocols, which can be seen as a Reference Model
for conversations see Table 6.2.

FIPA has defined a number of interaction protocols. For example the FIPA-
REQUEST protocol specifies that a request performative should be followed by a
refuse, or an agree [FIPA, 2002h]. After the agree performative, the performative fail-
ure and inform are allowed.

Other interaction protocols deal with the Contract Net [FIPA, 2002e] and Auctions,
such as the English auction [FIPA, 2002g] and the Dutch auction [FIPA, 2002f]. In addi-
tion, Haddadi has defined a library of message patterns [Haddadi, 1995]. Examples are,
that an order performative has to be followed by a report performative, require has to
be followed by agree or reject, and propose has to be followed by request, require or
reject.

In Table 6.3 we have placed the performatives as given in Table 6.1 against the

148 Chapter 6. Message Content Ontologies

Protocol Description Example utterance exchanged between two or more agents
FIPA-Query asking A to B (directive): “What is the price of a CD?”
for information B to A (commissive): “Agree to answer the question.”
B to A (representative): “The price of a CD is 30 EURO.”
FIPA-Request requesting to A to B (directive): “Can you order a CD?”
perform an action B to A (commissive): “Agree to perform the action.”
B to A (commissive): “The CD will arrive next week.”
FIPA-Auction bid on A to B, C (directive): “Who wants to buy this CD?”
object B to A (commissive): “I bid 20 EURO.”
C to A (commissive): “I bid 18 EURO.”
A to B, C (representative): “Sold to A, for 20 EURO.”
Negotiate negotiate on A to B (directive): “What is the price of a CD?”
object B to A (commissive): “I offer the CD for 30 EURO.”
A to B (representative): “I reject, price too high.”
B to A (commissive): “I offer the CD for 25 EURO.”
A to B (representative): ~ “I accept.”
Supervise coordinate M to A (declarative): “Follow my instructions.”
an agent or process A to M (commissive): “Agree.”
M to A (directive): “Find a CD shop.”
A to M (representative): “I found a CD shop.”
M to A (directive): “Try to buy a CD for less then 28 EURO.”
A to M (representative): “I bought a CD for 25 EURO.”
M to A (directive): “Send CD to address X.”
M to A (expressive): “You did a good job.”
Table 6.2

A selection of types of protocols and descriptions. The FIPA-Query, FIPA-Request
and FIPA-Auction protocols originate from the FIPA standards (cf. [FIPA, 2002h,
FIPA, 2002h, FIPA, 2002¢]) and are extended with speech act categories and examples
related to the musicshop domain. The Negotiate and Supervise protocols are added to il-
lustrate the variety of possible protocols. In the example column, the letters “A”, “B”, “C”
and “M” represent names of agents.

protocols as given in Table 6.2, in order to illustrate the AllowedPerformative relation.
As shown, a number of performatives are required (+) or optional (*). The three existing
protocols, Query, Request and Auction, allow the agree performative that confirms a
directive. We see the agree performative as a commissive, which is optional. The idea
is that agents “agree” on how to negotiate. Examples of agreements are the number of
negotiation rounds, number of participants, object of negotiation and rule setting.

A negotiation protocol is also called the “rule of encounter”, which enables agents
to share allowed sequences of performatives in a negotiation [Lomuscio et al., 2003]. In
our negotiate protocol, directives are used to ask a participant of a negotiation for an offer,
such as the price. In response, a commissive is used to offer a bid. Next, representatives
are used to react positively or negatively on a bid.

In our supervision protocol, directives are used by an agent with a manager role to
instruct its subordinates, such as an operator. The operator responds with representatives
to report the result of the instructions. The use of the expressive performative can play
a role in learning situations, because it enables a feedback, such as rewarding. Taking a

6.3. Message Content Ontology Framework 149

Performatives / Protocols Representative Commissives Declaratives Directives Expressives

Query + + +

Request * * +

Auction + + +

Negotiate + + * + *

Supervise + * * + *
Table 6.3

Examples of the Allowed Performative Relation relation, on the basis of the Performa-
tives as given in Table 6.1 and protocols as given in Table 6.2. In this relation, performa-
tives are required (+) or optional (*).

situation where a manager supervises an operator, the manager could use feedback in the
form of expressives, to teach the operator how to perform its activities. In the end, the
operator could operate without direct supervision of the manager.

Ontologies that can be used as the basis of protocol ontologies are
the Enterprise Ontology [Uscholdetal., 1998] and the Toronto Virtual Enter-
prise [Gruninger and Fox, 1994]'0.

6.3.2.4 Agent Role Ontology

The agent role ontology defines the roles that agents can play in conversations. An agent
role defines the responsibility and allowed behavior of an agent. In the Reference Model,
we modeled responsibility and allowed behavior of an agent as the protocols and agent is
allowed to use. This is represented by the allowed protocol relation in Figure 6.1.

We already discussed a number of agent roles: Operator and Manager (see Sec-
tion 2.2 (p.11)), Broker and Librarian (see Section 5.2 (p.101)) and an agent platform’s
Directory Facilitator (DF) and Agent Manager Service (AMS) (see Section 3.4.1 (p.63)).
Furthermore, in an e-commerce setting there are roles, such as supplier, producer, partner,
and consumer [Weigand and Hasselbring, 2001].

6.3.3 Message Content Ontology

Message content ontologies can be used by agents to discuss about facts, beliefs, hy-
potheses and predications related to specific domains. Hence, a message content ontol-
ogy makes use of a conversation domain, performative, protocol and agent role ontolo-
gies. When agents want to communicate, the appropriate message content ontology is
selected.

Based on the type of conversation, the required domain concepts and relations, per-
formatives and protocols, and agent roles are referred to (i.e. instantiated). In our frame-
work, a Message Content Ontology instantiates elements from the Reference Model (cf.
Figure 6.2).

10See www.aiai.ed.ac.uk/~ entprise/enterprise/ontology.html and www.eil.utoronto.ca/tove/toveont.html.

150 Chapter 6. Message Content Ontologies

Several examples of message content ontologies can be found in the agent literature
and agent programming manuals: Agent Management Ontology, Currency ontology and
Cinema Service Ontology. We briefly discuss these ontologies and relate them to our
agent communication ontologies.

The FIPA Agent Management Ontology is a message content ontology used for con-
versations between (visiting) agents and the agents on a FIPA compliant agent plat-
form (cf. [FIPA, 2002c]): the AMS (agent management service) and the DF (direc-
tory facilitator). In order for a (visiting) agent to work on an agent platform, it has to
behave according to an agent life cycle (as discussed in Section 3.4) [FIPA, 2002c].
Every (visiting) agent that wants to join an agent platform should register itself with
the AMS and the DF. The AMS maintains a register of physical agent addresses,
and the DF maintains a register of agent service descriptions. If the agent decides
to leave the agent platform, it should deregister itself.

This ontology is composed of a number of performatives: register, deregister,
search and modify. Within our framework, the performatives register, deregister
and modify are of type “directive”, because visiting agents use them to change the
DF’s register. For example, the performative modify is used when an agent wants
to change its address or service. In case the agent wants to locate other agents, it
can use the performative search. This performative is of type directive, because it
can be used to guestion the DF’s register.

Examples of the relations between speech acts and domain concepts are: the per-
formatives register requires the concept agent-description, which contains other
properties such as name to identify the agent, address to locate the agent and
services to describe the services the agent offers. Furthermore, the performative
search requires the concept service, and the performative modify requires the
domain concept agent-description. Allowed sequences of performatives are not
specified in the ontology.

There is a notion of visiting agent, DF and AMS. The role of a visiting agent is to
register itself on a platform and it can make use of the search, modify and deregister
performative. However, these roles in relation to protocols are not specified.

The Cambia Currency Ontology is a message content ontology used by an agent that
provides a service to make currency conversions between a number of currencies'!.
An agent should specify source and destination currency as well as the date, to
determine the correct exchange rate, and the amount. The ontology contains the
performative convert, which requires four domain concepts: from, to, rate and
dateC. This performative is of type directive, because it is used to request the
currency agent. The concept from is used to denote the source currency code (e.g.
“USD”) and the amount. To specify the target currency code (e.g. “EUR”), the
concept to is used. The concept rate specifies the type of conversation, this can be

1See http://zurich.agentcities.whitestein.ch/Services/Cambia.html.

6.3. Message Content Ontology Framework 151

“cash”, “inter-bank” or “credit card”. Finally, the concept dateC contains the date
of conversion. There is no notion of role or protocol.

The Tilab Cinema Representation Service Ontology is a message content ontology
used by the cinema broker agent that provides information concerning a selection
of cinemas of the cities of Turin and Paris'?. One of the specified performatives is:
provide-cinema-info (of type directive) which can be used to question the cinema
broker. The domain concepts are Show, Cinema and CinemaPreference. The
concept Show contains attributes related to time of a show and price. The concept
Cinema describes the address and contact details of a cinema. The preferences of
a user, such as time and price are described in the concept CinemaPreference.

There is a notion of two roles: user agent and cinema broker. A user agent uses
the performative provide-cinema-info combined with the concept CinemaPrefer-
ence to ask the cinema broker, to acquire a list of available shows and cinemas. The
relation between the user agent that can use the performative provide-cinema-info
and the cinema broker agents, is not specified in the ontology.

In the three examples, we can identify the notion of performative and domain con-
cepts, and the relation between the performatives and the allowed domain concepts. Roles,
protocols and relations between roles, protocols and performatives are not specified. The
reason for this is that these ontologies are applied in relative simple agent systems, with a
limited number of agents, reasoning capabilities and possible interactions. Furthermore,
these ontologies are designed “ad hoc”. Another message content ontology that is used by
agents in an agent-based supply chain management system, can be found in Section 2.5.4

(p-33).

6.3.4 Message Content Ontology Creation

In our approach, there are two steps for defining a message content ontology: identifica-
tion of conversation specific concepts and specification of conversation specific concepts.
This process is illustrated in Figure 6.3.

In the first step: Identification of Conversation Specific Concepts, the required
conversation specific concepts for the Message Content Ontology are defined. This step
takes as input the Agent Communication Meta Ontology and the ontologies of the
Reference Model: the Conversation Domain, Agent Role, Performative and Proto-
col Ontology (see Figure 6.1). On the Agent Communication Meta Ontology level, the
classes of the Reference Model are seen as instances'®. The result of this step is (tech-
nically) an object diagram that shows the needed concepts for a conversation (see Fig-
ure 6.4). On the level of the Reference Model, the instances of the object diagram are
seen as classes.

In the second step: Specification of Conversation Specific Concepts, the de-
fined conversation specific concepts will be specified in detail. The step takes the object

12See http://jade.cselt.it/AgentCities/CinemaRepresentativeServiceDescription.htm.
13T define a class based on a metaclass, one has to make an instantiation of a metaclass.

152 Chapter 6. Message Content Ontologies

diagram and a selection of external ontologies as input. The attributes for the classes are
defined in the Reference Model and linked to other, possibly already existing, classes. The
result is a message content ontology represented as a class diagram(see e.g. Figure 6.5).

The idea is that the conversation specific concepts can make use of classes imported
from other ontologies.

see Table 6.1 see Table 6.2

see Fig. 6.1 performative protocol

agent comunication ontology ontology
meta ontology

(meta class diagram)

external ontologies

identification of

conversation domain conversation specific

Y

ontology concepts
agent role ¢ specification of
ontology conversation conversation specific
specific concepts concepts
(object diagram)
e.g. Fig. 6.4 i
message content
ontology
(class diagram)
e.g. Fig. 6.5
Figure 6.3

Inference diagram showing the process of message content ontology creation. The step
Identification of Conversation Specific Concepts takes as input the agent commu-
nication meta ontology, conversation domain, agent role, performative and proto-
col ontologies. The result of this step is (technically) an object diagram that shows the
needed concepts for a conversation. The step specification of conversation specific
concepts takes the object diagram and a selection of external ontologies as input. The
result is a message content ontology represented as a class diagram. Where applicable,
links to figures, tables or examples in this chapter are given.

In the next two sections, we discuss identification of conversation specific concepts
and specification of conversation specific concepts in detail.

6.3.4.1 Identification of Conversation Specific Concepts

Conversation specific concepts are defined based on generic classes of the Agent Commu-
nication Meta Ontology. In order to illustrate the process of creating the required classes
of a message content ontology, we define an example in an electronic commerce domain,
because it is a popular domain for agent systems [Luck et al., 2003]. Agents can represent
parties that want to do business, such as buying and selling items. Both the buying agent

6.3. Message Content Ontology Framework 153

and the selling agent will try to negotiate in order to get the best deal. An example of a
negotiation is bargaining for the price of a CD in a musicshop.

In our example, we start with defining roles needed for CD bargaining: buyer and
seller. The buyer role has as goal to buy a CD for a reasonable price. The role of seller is
to sell as many CDs as possible. In order to have the two roles negotiate with each other,
we defined two protocols: cdNegotiationBuy and cdNegotiationSell. The first protocol
is coupled to the buyer and allows the performatives: ask, buy, reject and abort. The
second protocol is coupled to the seller and allows the performatives: offer and abort.
The performative ask is used by the buyer to start a negotiation by asking for the price
of CD. The seller can offer a price, which the buyer can accept by using buy or continue
the negotiation by using reject. Both roles can break off the negotiation by using the
performative abort. The domain concepts involved are CD and price. The concept CD
refers to the item subject of negotiation. The concept price refers to the argumentation
used in the negotiation.

The instantiation of the required conversation specific concepts is illustrated in Fig-
ure 6.4. This object diagram shows the required conversation specific concepts for the
musicshop example, as instances of the Agent Communication Meta Ontology (e.g. the
object CD is an instance of the metaclass Concept). The name of an object is com-
posed of the identification of an object, followed by the name of the metaclass (e.g. Con-
cept, Directive, Negotiate and AgentRole). For example, the object Buy is an instance
of the metaclass Representative. The relations between the objects are inherited from
the Agent Communication Meta Ontology. As illustrated in Figure 6.1, the relation be-
tween AgentRole and Negotiation (which is of type Protocol) is allowed protocol.
The relations between the Protocols and the directives, commissive and representa-
tive (which are of type Performative is allowed performative. The relation between the
Performatives and the Concepits is of type allowed concept.

6.3.4.2 Specification of Conversation Specific Concepts

In order to make the switch from the metalevel to the domain level, we map the defined
instances of the Reference Model onto classes. For example, the instances defined in Fig-
ure 6.4 are mapped on the classes in Figure 6.5. The purpose of this step is to elaborate (i.e.
make the generic classes specific) on the definition of the conversation specific concepts in
terms of properties (or attributes) and relations. We refer to [Noy and McGuinness, 2001]
for ways to define the properties of these classes. The resulting class diagram is illustrated
in Figure 6.5.

For our example, the concept CD is equipped with the attributes title, artist and
content. The attribute content is described using the concept Track for individual track
identification. The concept Track is imported from the ontology for a catalog system for
a classical music compact disc publisher [Cranefield and Purvis, 1999]. We refer to this
ontology by “CDCatalog”. Other ways to identify products in an electronic commerce
setting are defined in Section 6.3.3. An alternative to the CDCatalog is the Music Domain
Ontology, which contains concepts that can be used to describe music and/or songs on

154 Chapter 6. Message Content Ontologies

Conversation Performative Protocol Agent Role
Domain Ontology Ontology Ontology
Ontology

ask : Directive

buy : Representative 1

cd : Concent cdNegotiationBuy : Negotiate ——L buyer : AgentRole
cd : Concept
reject : Representative

price - Concept abort - Representative +—1—

cdNegatiationSell - Negotiate _—l_ seller - AgentRale

loffer : Commissive

Figure 6.4

Object diagram showing the conversation-specific concepts as instances of the agent com-
munication meta ontology. The placements of the object resemblances the sequence of
metaclass place placement in Fig. 6.1. From left to right, the sequence is Concept, type
of Performative, type of Protocols and AgentRole. The name of an object is composed of
the identification of an object, followed by the name of the metaclass. The object CD is
an instance of metaclass Concept. The relations between the objects are inherited from
the agent communication meta ontology, see Figure 6.1.

the basis of composer, musical instruments, musicians and style”.

The concept price contains the attributes value and currency. The currency at-
tribute is of type CurrencyCode, which is imported from the currency ontology that spec-
ifies the “three letter currency codes” as defined by ISO 4217'3. Given this attribute, the
agents involved could use the above described currency conversation service.

The performative Buy makes use of the attribute payment of type Money-Tender-
Type, which is imported from the Cyc upper level ontology '®. This concept defines types
of the payment form, such as credit card, cash and cyber coin. When the buyer wants to
actually buy a CD, the buyer can also negotiate on the way of payment.

In order to summarize the process from Agent Communication Meta Ontology to
message content ontology, we have described a “trace” in Figure 6.6. As shown, the class
buy is an instantiation of the class Representative from the Performative Ontology.
The class Representative is an instance of the metaclass Performative from the Agent
Communication Meta Ontology. The class Buy makes use of the class Money-Tender-
Type of the external ontology Cyc, to describe the attribute payment.

14See www.daml.org/ontologies/276.

15See www.daml.ecs.soton.ac.uk/ont/currency.daml.

16The Cyc upper ontology is reused in the HPKB-UPPER-LEVEL ontology. The Cyc ontology can be found
at www.cyc.com.

6.3. Message Content Ontology Framework 155

Musicshop
Message Content Ontology

Ask

1 cdNegotiationBuy
1
1 Buy
+payement[1] : Cyc.Monder-Tender-Type 1
cD Buyer

+itle[1] : Strin.g +localName[1] : String

+artist[1] : String B +aid[1] : AgentManagement.AID
+content[1..*] : CDCatalog.Track +represents[1] : LegalEntity

1

Reject

on[1] : String i Seller
+localName[1] : String
+aid[1] : AgentManagement.AID
! Abort +represents[1] : LegalEntity
-+reason[1] : String

Price

+value[1] : float 1
+currency[1] : Currency.CurrencyCode

Offer

l lidity[1] : Date 1
1 *

Figure 6.5

Class diagram showing the design of the Musicshop Message Content Ontology. The
attribute types which contain a dot refer to imported types. For example, in class CD,
the member content is of type Track imported from the ontology CDCatalog. There is
no explicit relation defined between the concepts CD and Price, because they are not
coupled within conversations. This means that the two concepts are not used within one
utterance. The two concepts are implicitly related via the performatives Ask, Buy, Offer
and Reject.

6.3.5 Message Content Ontology Application

In order to discuss a message content ontology in action, we show how agents ap-
ply the musicshop ontology. In an ideal world, we can assume that all agents are ca-
pable of handling imported parts of message content ontologies. Problems related to
ontology integration include mapping between different types of languages, versions
of ontologies and levels of detail. For a discussion on the use of ontologies we refer
to [Uschold and Griininger, 1996]. Furthermore, we assume that the agents are FIPA-
Compliant, meaning that they have registered themselves at an agent platform and know
how to consult a platform’s DF (directory facilitator, i.e. an agent platform’s yellow
pages).

Below a part of a conversation is given, which is composed of four stages. The con-
versation in the third stage makes use of the Musicshop message content ontology. In the
first stage, where agent B consults the DF to find an agent that represents a CDshop, the
FIPA Agent Management Message Content Ontology (see also Section 6.3) is used. Then,

156 Chapter 6. Message Content Ontologies

Reference Model Musicshop
Agent Communication Message Content
Meta Ontology Performative Ontology
Ontology

«instance» «instance»

«metaclass»

____________ =t = = = —{Representative @___.-- - — — e ———] Buy
Performative

T

|

|

}

|

External Ontology :
Cyc]
|

|

|

_!

Money-Tender-Type [§ = == == mm == == o= o o o o o o o

Figure 6.6

The process from Agent Communication Meta Ontology to Message Content Ontology.
As shown the class buy in the Message Content Ontology is an instantiation of the class
Representative from the Performative Ontology. The class Representative is an in-
stance of the metaclass Performative from the Agent Communication Meta Ontology.

agent B starts a negotiation with agent S (the agent suggested by the DF) on how to follow
the message content ontology. This part of the conversation is based on the negotiation
protocol and makes use of the Execution Negotiation Message Content Ontology. Next,
the agents start the actual negotiation by arguing on the price of a CD on basis of the
Musicshop ontology and the negotiation protocol. Finally, the agents argue on the actual
payment using the Payment Negotiation Message Content Ontology. We added the Ex-
ecution Negotiation and Payment Negotiation Message Content Ontologies to illustrate
how agents can switch between multiple message content ontologies.

1: service location (using the FIPA Agent Management Message Content Ontology)
@ agent B to DF: (Search (service-description :type “CDShop”))

@ DF to agent B: (Agree (Search (service-description :type “CDShop”)))

® DF to agent B: (Result (AID name: “agent S”))

2: execution negotiation (using the Execution Negotiation Message Content Ontology)
@ agent B to agent S: (Ask (Ontology))

@ agent S to agent B: (Answer (Ontology name: “Musicshop”))

® agent B to agent S: (Tell (Role name: “buyer”))

@ agent S to agent B: (Tell (Role name: “seller”))

3: actual negotiation (using the MusicShop Message Content Ontology)

@ buyer to seller: (Ask (CD :title “the best of” :artist “Paolo Conte”))

@ seller to buyer: (Offer (Price :value “19.90” :currency “EUR”) :validity “18/02/2004")
@ buyer to seller: (Reject :reason “price too high”)

@ seller to buyer: (Offer (Price :value “18.50” :currency “EUR”) :validity “18/02/2004")
® buyer to seller: (Reject :reason “price too high”)

6.3. Message Content Ontology Framework 157

® seller to buyer: (Offer (Price :value “18.00” :currency “EUR”) :validity “18/02/2004”)
@ buyer to seller: (Buy (CD :title “the best of” :artist “Paolo Conte”) :payment “credit-card”)

4: payment negotiation (using the Payment Negotiation Message Content Ontology)

@ seller to buyer: (Ask (CreditCard))

@ buyer to seller: (Offer (CreditCard :number “1111 2222 3333 4444” :validity “1203”))
@ seller to buyer: (Reject :reason “credit card not valid”)

@ buyer to seller: (Offer (CreditCard :number “2222 3333 4444 5555” :validity “0105”))
® seller to buyer: (Accept :comment “CD will be delivered within 1 week™)

In the first stage, agent B sends message @ to the agent platform’s DF to search
for an agent that offers services belonging to the “CDshop” domain. After a lookup in
the DF’s repository, the DF suggests to contact agent S with message @. The conver-
sation between the DF and agent S, are based on the Agent Management Ontology, see
Section 6.3.3 and [FIPA, 2002c]. The applied protocol in this conversation is the Request-
Protocol.

In the second stage, agent B and agent S start a discussion on how to perform the
negotiation. Two decisions are made: one on the message content ontology (see messages
@ and @) to apply and on the division of roles (see messages @ and @). From here on
agent B plays the role of “buyer” and agent S plays the role of “seller”. More work on
ontology negotiation can be found in [Bailin and Truszkowski, 2001]. Here we assume
that the imported ontologies used in the musicshop ontology are available (e.g. via an
online ontology repository). If not, the agents should be capable of finding a substitute
ontology or can decide to stop the negotiation. In addition, version problems have to be
solved. For example, agent A and agent S make use of different versions of the music-
shop ontology or one or more of the imported ontologies. We assume that the agents are
capable of detecting version problems and are capable of resolving it, by upgrading to a
common version. There can also be problems related to the level of detail of the imported
ontologies. For example, one attribute can be of a type in an upper ontology and another
in an application ontology. In this case, we assume that the agents are capable of building
mappings or bridges between levels of detail. The applied protocol in this conversation is
the negotiation-protocol.

In the third stage, the buyer begins the actual negotiation, based on the Musicshop
ontology and the negotiation-protocol. The negotiation starts with message @ using the
action Ask combined with the concept CD to ask for an offer of the seller. The seller
responds with message @, which has the action Offer including a validity attribute and
the object Price. The validity attribute is used to refer to the validity of the offer for
this particular CD. Next, the buyer sends message @ containing the action Reject and a
reason, in order to reject the offer. The seller responds with message @ containing a new
Offer, which is rejected by message ®. The offer in and ® is accepted by the buyer, and
sends message @ to the seller, which contains the action Buy.

Finally, in the fourth stage, the seller and buyer try to settle the payment, which is
based on the negotiation-protocol. As shown, the seller asks the buyer for details on the
selected payment form, i.e. “credit card”. The first answer of the buyer is rejected due to
an invalid credit card. The second answer of the buyer is accepted and a delivery date is

158 Chapter 6. Message Content Ontologies

model function domain
communication execution negotiation, FIPA Agent Management,
actual negotiation, Execution Negotiation,
payment negotiation MusicShop and Payment Negotiation
Message Content Ontology
competence decide on offer, make payments current offer, available payment forms
self determine role, instruct planner buyer role
planner task selection, plan tasks agent’s agenda
environment search for sellers, manage contracts ~ known agents
Table 6.4

The five models of the buyer agent (according to the 5C Model) representing the its ca-
pabilities split up in function and domain.

offered.

6.3.6 Agent Design

In Table 6.4, a 5C model of the buyer agent is shown. In order to perform the conversation
described above, the communication model has to be able to interact with other agents,
such as sellers, based on available message content ontologies. The environment model
will search for other agents (such as the seller agent), store details on known agents and
manage contracts (such as the promise to buy a CD) with other agents. The self model
contains the role of the agent, i.e. Buyer and instructs the planner model to behave ac-
cordingly. The planner model will select the appropriate taks based on the instructions of
the self model. Finally, the competence model decides on offers from the seller and can
make payments. Furthermore, it has details on the current offer and on available payment
forms.

As shown, all 5 models of the 5C model are needed for agents interacting on the ba-
sis of the Reference Model. One of the reasons for this overhead is due to pre-negotiation
discussion. Agents first have to decide what message content ontology to use and how to
divide the agent roles (as illustrated in phase 2 in the conversation discussed above). This
possibility is appealing for a system based on ‘“Mutual Adjustment”, see Section 3.3.3
(p-59). When using this coordination strategy, the agent role ontology will contain ex-
plicit notion of roles, which are necessary, when agents are capable of changing roles.

6.4 Operationalization of Ontology-based Communica-
tion

In the previous section we presented a framework containing a Reference Model. In this
section, we argue that not all parts of the Reference Model are always required for agent
communication. For example, the agent role ontology is meant to model more elaborate
roles, such as Manager and Operator. One of the reasons to distribute the task of a system
is to separate responsibilities, which are connected to roles. Given, the current state of

6.4. Operationalization of Ontology-based Communication 159

the art in agent technology, agent designers often choose to have agents commit to one
role, e.g. Broker, Librarian, Manager or Operator. Therefore, given the current state of the
art, the use of agent roles can be seen as superfluous. Consequently, the relation between
protocols and agent roles can become redundant. For example, in the case of the FIPA
Agent Management Ontology, visiting agents already know the existence of the AMS
and the DF. Even registration procedures (with the AMS and the DF) are hardwired in
agent tool kits as two separate agents [Bellifemine et al., 2003].

Most agents at this moment are relatively simple, in terms of reasoning power. One
reason for that is that implementing agents with traditional Al languages is problem-
atic [Labrou et al., 1999]'7. A lot of existing tools such as JADE are designed in Java,
because of its popularity and of the availability of reusable components. Furthermore,
more low level standardization has to be realized [Luck et al., 2003].

The role of a Reference Model is to provide means for agents and agent engineers to
reason about ontology-based agent communication. Therefore, we propose to use a Mini-
mal Ontology, which only defines conversation specific concepts. The Minimal Ontology
is discussed in detail in Section 6.4.1.1. When designing relative simple agents using the
current state of the art, the Minimal Ontology can be applied.

In the remainder of this section, we answer the following two questions: How
can ontologies for message content be designed? and How can messages be generated
and interpreted, both on the basis of a Minimal Ontology? The first question is re-
lated to ontology modeling. Typical issues related to ontology modeling are, domain
of interest, knowledge to be stored in the ontology and the maintenance of the ontol-
ogy [Noy and McGuinness, 2001]. The second question is related to the application of
the ontology. In this case, ontologies are used to support relatively simple conversations
between relative simple agents. These conversations are built up out of multiple messages,
which can contain questions, answers, offers and so forth.

6.4.1 Message Content Ontology Implementation

In this section we present the minimal agent communication ontology. Followed by a
method to define message content ontologies based on the Minimal Ontology. Next, we
discuss how message content ontologies can be mapped onto an implementation lan-
guage. Finally, we discuss issues related to message content ontology creation.

6.4.1.1 Minimal Agent communication ontology

The minimal agent communication ontology'®, presented, is preliminary and contains
only basic concepts and relations based on the Agent Communication Meta Ontology.
The idea is, that when we gained enough experience with this Minimal Ontology, and
possible conversations, extensions in the direction of the Reference Model can be made.
The trade-off is between expressive power and usability. A Minimal Ontology that is very

17 Although this claim originates from 1999, little is known on agents with considerable reasoning power,
such as learning and reasoning on different types of ontologies and knowledge.
181n the remainder we refer to “minimal agent communication ontology” by “Minimal Ontology”.

160 Chapter 6. Message Content Ontologies

expressive may not be easy to use. For example, a Minimal Ontology could demand that
the state of an agent and the overall goals of the system have to be specified. The idea
could be that the sending agent, specifies its internal state and denotes for what goal a
message is sent. This could lead to an overload of information, where the agents spend
more time on processing information than on its actual task.

As mentioned above, FIPA has specified ontology-based communication, in which
the semantics of message contents is specified in message content ontologies. The JADE
toolkit has implemented the FIPA specifications'®. The ontology handling functionalities
within this toolkit are extended to explicit ontology handling. JADE is Java oriented,
therefore ontology specifications have to be expressed in Java code. This code will be
part of the agent.

Every concept in an ontology has to be defined as a Java Bean. A Java Bean is a
special type of a Java class, which adheres to a specific design. A Java Bean has members
(i.e. attributes) that can be written with a set operation and be read with a get operation
or an is operation?’. An example of a Java Bean is given in Figure 6.7.

One of the content languages FIPA has described and for which tools are available
is FIPA-SLO?! [FIPA, 2002i]. The SLO representation of this class is (CD :name “the
best of” :artist "Paolo Conte”). We focus on the creation of the ontologies and use the
SLO format to describe examples of the content of messages.

For every sent message, a translation from the internal Java instances to SLO, has
to be made. For every received message, a translation from SLO representation to internal
Java instances has to be made. A more elegant alternative functionality is to manipulate
ontologies as external resources expressed in SLO. However, no concrete implementation
of a SLO knowledge base is available.

The JADE toolkit offers limited ontology manipulation, we follow its (limited) view
on ontologies. The reason for this is that a lot of agent engineers use the toolkit to de-
velop agents in. Within the JADE toolkit, there are a limited number of basic ontological
classes®?> with corresponding concepts that can form the basis of a Minimal Ontology.
The candidate elements of the Minimal Ontology are Concept and Action, because they
correspond with the domain concept and performative from our Reference Model. We
neglect the notion of role and protocol in order to keep the ontology minimal.

A Concept is a superclass of the domain concepts that are subject of discussion,
such as good, price, person, and address. This element refers to the conversation domain
ontology. A Concept has properties that can have values. For example, a CD can have the
properties title and artist instantiated with the values “the best of” and “Paolo Conte”.

An Action is a superclass of the intentions (or performatives) that can change the
world. This element refers to the performatives of the performative ontology. Examples
of actions are sell, offer, ask, tell, propose and buy.

Every Action contains at least one Concept. This means that every action is coupled

191t has successfully passed so called interoperability tests held by FIPA, see http://jade.cselt.it.

20The i s operation is used to check the value of boolean typed members.

21810 is a subset of FIPA-SL. The syntax of SL is based on s-expressions used in LISP, which are balanced
parenthesis lists [Labrou et al., 1999].

22These elements (i.e. Java classes) can be found in the jade.content package.

6.4. Operationalization of Ontology-based Communication 161

public class CD extends Concept{
private String artist, title;
private Collection tracks = new Collection();
public void setArtist(String s) { artist =s; }
public String getArtist() { return artist; }
public void setTitle(String s) { title = s; }
public String getTitle() { return title; }
public void addTrack(Track t) { tracks.add(t); }
public List getAllTracks() { return tracks; }
public void removeTrack(Track t) { tracks.remove(t); }
public void clearAllTracks() { tracks.clear(); }

CD theCD = new CD();
theCD.setTitle("the best of”);
theCD.setArtist("Paolo Conte”);

Figure 6.7

Java bean class definition of the concept “CD” and a possible initialization. The first
part of the code is the bean definition, showing its members and set and get methods.
The second part shows how parts of the bean are filled.

to one or more objects in the world. For example, Buy is connected to a CD and offer is
connected to a price. Therefore, we include the relation AllowedConcept in the Minimal
Ontology, to relate Concepts to the Action class.

An example message content ontology related to a musicshop is illustrated in Fig-
ure 6.8. As illustrated the conversation specific concepts are defined as abstract classes
(i.e. the classes printed in italic letters) and not as meta classes. The reason for this is to
keep the creation of message content ontologies less complicated compared to the Agent
Communication Meta Ontology. We can already see, a drawback of the Minimal Ontol-
ogy, because, it does not include the possibility to define axioms and rules. For example,
the rule that the seller has to respond with the action Offer after receiving an action Ask,
cannot easily be modeled in the ontology.

In the remainder of this section, we discuss a tool that is a first attempt to automate
agent coding. With the use of Protégé message content ontologies can be defined based
on the Minimal Ontology. The ontologies defined within Protégé can be translated to Java
code, which can be used for buildings agents with the JADE toolkit.

6.4.1.2 Defining Message Content Ontologies

Defining a message content ontology means specializing the elements of the Minimal
Ontology. In order to be able to use the current ontology editors to design our Minimal
Ontology we decided to comply with the OKBC knowledge model, used in Protégé 2000,
Protégé 2000 is a commonly used ontology editor, which enables engineers to graph-

162 Chapter 6. Message Content Ontologies

Musicshop
Message Content Ontology

Ask
1
I
cbh
+itle[1] : String
+artist[1] : String Buy
+content[1..*] : String -payment1] - String

Concept - Action
Reject | D
+reason([1] : String

Offer

N +validity[1] : String
Price

+value[1] : float
+currency([1] : String

Abort

+reason(1] : String

Figure 6.8

Musicshop Message Content Ontology for a conversation in a CD shop (see also Fig-
ure 6.5 (p.155)), based on the Minimal Ontology. The first class citizens of the Minimal
Ontology are represented as abstract classes, which are printed in italic letters. The as-
sociations between classes of type Action and Concept are of type AllowedConcept.
There is no explicit relation defined between the concepts CD and Price, for the same
reason described in the caption in Figure 6.5 (p.155).

ically model ontologies. Furthermore, additional functionality and storage formats can
be “plugged in” into the system. An ontology within Protégé is based on a frame-based
(OKBC) knowledge model [Noy et al., 2000]. Therefore, ontologies modeled with this
tool, can be mapped onto Java structures.

The ontology model of Protégé consists of classes, slots and slot
facets [Noy et al., 2000]. Classes are concepts in the domain of discourse, with
which a taxonomic hierarchy can be constructed. Slots describe properties or attributes
of these classes. A slot in itself is a frame that has a type. This can be a primitive class,
like String, Integer and Float, or an instance of another class. Furthermore, a slot has a
value. Slot facets (see Table 6.5) describe properties (or constraints) of slots.

The design of the musicshop ontology is given in Figure 6.9 and Figure 6.8. As
shown the concept CD has three slots: title, artist and tracks. The slots title and artist

6.4. Operationalization of Ontology-based Communication 163

Facet Description Examples
cardinality of aslot the number of values class person can only have one father, ¢ = 1,
the slot can have, i.e. 0,1,N. class father can have multiple children, ¢ = N.
allowed values restriction of the value type Integer, String, Instance of a class.
of a slot.
numeric boundaries the minimum and maximum the slot age is between 0 and 150.

value for a numeric slot
required or optional ~ whether a slot is required or not the slot name is required for the class person.

Table 6.5
Facets of the slots part of ontologies within Protégé including description and examples.

are modeled as String, are required and the cardinality is single. This means that every
instance of CD, such as the Paolo Conte’s CD, needs exactly one title and artist. We
also added the slot tracks, to define the content of a CD. The slot is defined as multiple
instances, which means that the slot refers to a collection (sequence) of instances of the
type Track. Each class Track has the slots title and duration.

The concept Price has two slots: value and currency. The slot value denotes the
amount of the price and currency the corresponding currency. In order to comply with
the currency slot with international standards, the values of this slot could be restricted to
an ontology that has defined internal currency codes. The International Organization for
Standardization (ISO), a worldwide federation of national standards bodies, has specified
the ISO 4217 standard, which contains global currencies and the three-character currency
codes that are generally used to represent them??. In order to keep the ontology simple,
this step is omitted by only considering EUROSs, which is represented by “EUR”.

In order to have the agents discuss on CDs in a musicshop setting, four Action
types were modeled: Buy, Ask, Reject and Offer. These actions can be used to negotiate
on the price of CDs. The actions correspond with the implicit performatives defined in
Section 6.3.4.

One of the advantages of the Protégé tool is that other ontologies can be imported.
Repositories of existing ontologies ranging from Biological domains to market place
product and service descriptions, can be found at the Protégé community page and at
the DAML site?*. The languages used to represent these ontologies can range from XML,
RDF, DAML-OIL, XMI, SQL to UML.

6.4.1.3 Mapping from Ontologies Design to Java Beans

To support the agent engineer in creating and using message content ontologies, we de-
veloped a plug-in for the Protégé 2000 environment called the Bean Generator. With this
plug-in, a domain ontology within Protégé can be developed and exported to Java beans.

The translation from Protégé knowledge base to Java Beans works as follows: Every
class in the Minimal Ontology, i.e. Concept and Action is the basis for the generation

23See www.xe.com/iso4217. htm.
24See http://protege.stanford.edu/ontologies.html and www.daml.org/data.

164 Chapter 6. Message Content Ontologies

Project Window Help

bl=lal ==

(C]) Classes | [s][|Slots | s | Tilns #
Refationship[se. v [V| €| &% |{[C/CD _ @ype=:STANDARD-CLASS)
[©): THINGA Name Documentation Constraints [;
©-(C) SYSTEM-CLASS A -y I b
@ (C)Concept” i
%g‘e | Rote
© Track | concrete -|
@ (C) Action m—
(© Buy 4 Template Slots I—JTU kA l :
(© Ask Name | _Twe | Cardinality | Other Fac|
(C) Reject | |Sltracks Instance multiple classes={Track}
(C) Offer | [S]e String required single
| [S]artist String required single

a—w o

Figure 6.9
Screenshot from Protégé containing the Musicshop Message Content Ontology based on
the Minimal Ontology.

of a Java class. The taxonomic structure (i.e. inheritance relations) of the domain model
is mapped on the inheritance capabilities of Java. Therefore if S1 is a super-schema of
S2 then the class C2 associated to schema S2 must extend the class C1. Slots of a
Class are associated with data members of the Java Bean associated with the Class. If the
type of the slot is a primitive class, like String, Integer or Float, then the Bean Generator
maps them onto their Java equivalents, otherwise the member of the class is defined as an
instance of the corresponding Java class. If the cardinality is higher than one, a class of
type Collection? is used.

The methods for generating Java classes from an ontology design is given in Fig-
ure 6.10. In Protégé an ontology is represented as a knowledge base, i.e. the collection
of classes, slots and facets. Starting from this knowledge base, the method generate is
called. This method first generates an ontology mapping file, as given in Figure 6.11.
Next, it adds schemas to the ontology-mapping file and generate beans for every subclass
of the classes Concept and Action.

The addToSchema method adds the definition of a class in terms of a Schema.
Next, it adds fields to the schema that define the slots and their facets. As shown in Fig-
ure 6.11, the schemas for the concepts Track and CD are added. Furthermore, the fields
for the cdSchema are specified including their type, cardinality and whether they are
mandatory or not.

The generateBean method creates a file (i.e. a Java bean) according to the class
name. The file is filled with a bean definition and the slots of the class. This definition

25The class Collection is only an interface. The class java.util. ArrayList actually implements the class Col-
lection.

6.4. Operationalization of Ontology-based Communication 165

public class BeanGenerator {
private String ontologyName, package;
private File ontologyMapping;

public void generate(KnowledgeBase kb) {
ontologyMapping = generateFile(ontologyName + ”.java”);
(for every superclass in { Concept, Action }) {
(for every candidate in kb.getCls(superclass).getSubClasses()) {
addToScheme(candidate);
generateBean(candidate);
}
}

}
public void addToScheme(Cls cls) {
(for every slot in Cls.getDirectSlots()) {
String attribute Type = translateFromProtegeToJava(slot.getType());
addScheme(ontologyMapping, slot.getName(), attributeType);
addSlotToScheme(ontologyMapping, slot.getName(), attribute Type);

}

public void generateBean(Cls cls) {
File f = generateFile(cls.getName + ”.java”);
generateBeanDefinition(f, cls.getType());
(for every slot in Cls.getDirectSlots()) {
String attribute Type = translateFromProtegeToJava(slot.getType());
addMember(f, slot.getName(), attributeType);
addSetter(f, slot.getName(), attribute Type);
addGetter(f, slot.getName(), attribute Type);

}
}

Figure 6.10
Simplified Java code for generating the “ontology mapping file” and accompagnied Java
beans.

expresses the inheritance relation of the bean. For example, the inheritance relation be-
tween the class CD and the class Concept, is expressed in Java by class CD extends
Concept as illustrated in Figure 6.7.

For every slot in the class, a translation from Protégé type to Java type is made”S.
Next, the attribute definition and its associated getter and setter are added. For example for
the slot “title”, the member specification String title is added and the method getTitle()
and setTitle().

26Most types, such as String and Float can be mapped directly. However, the ANY type is mapped onto object
and symbol is mapped on String.

166 Chapter 6. Message Content Ontologies

public class MusicShopOntology extends BasicOntology {
// vocabulary
public static final String CD ARTIST="artist";
public static final String CD TRACKS="tracks”;
public static final String CD TITLE="title”;
public static final String CD="CD";
public static final String TRACK="track”;

.p'l.lblic MusicShopOntology() {

// concepts

ConceptScheme trackScheme = new ConceptScheme(TRACK);
add(trackScheme, musicshop.Track.class);

ConceptScheme cdScheme = new ConceptScheme(CD);
add(cdScheme, musicshop.CD.class);

.//'j.ﬁelds
cdScheme.add(CD TITLE, getScheme(STRING), MANDATORY);

cdScheme.add(CD TRACKS, trackScheme, 1, UNLIMITED);
cdScheme.add(CD ARTIST, getScheme(STRING),MANDATORY);

Figure 6.11

Part of the “ontology mapping file” (expressed in Java code) for the Musicshop Message
Content Ontology, generated by the Beangenerator. The first part of the file defines
the vocabulary of the ontology. Next, the schemas for the concepts Track and CD are
added. Finally, the members for schemas are specified including their type, cardinality
and whether they are mandatory or not.

Discussion On the basis of the generated Java beans and the ontology-mapping file,
agents can translate internal Java instances into message contents and vice versa. There-
fore, the agents do not need an inference engine that can reason about message content.
This can make agents simple and small (i.e. a light footprint?’). One way to look at this,
is that many agents will not have to be able to reason on the knowledge level, because
they have to perform relatively simple tasks, such as information retrieval and gathering.

One of the disadvantages of this approach is, that the ontology handling is rather
static. If something in an ontology changes (e.g. due to maintenance), the internals of
the agent have to be altered. Furthermore, it is rather complex to insert new ontologies at
runtime. This means that the internals of the agent have to be altered in runtime, with for
example reflection. An alternative would be that the agent is equipped with an inference
engine and a ontology knowledge base that can be altered at runtime.

27 Actual size of the agent expressed in bytes.

6.4. Operationalization of Ontology-based Communication 167

6.4.2 Message Content Ontology Application

In this section, we discuss how agents can generate and interpret the content of messages.
Content generation is described using the content encoding process. Content interpreta-
tion is described using the content decoding process.

6.4.2.1 Content Encoding

There are two basic reasons for an agent to send a message. First, to start a conversation,
such as asking for the price of a CD. Secondly to participate in a conversation, such
as responding to a question. In both cases, the agents have to make translations from
its internal state (i.e. collection of java instances) to an ACL languages, such as SLO.
Translations can be made with an encoder.

An encoder is a service that can translate a piece of information from one format
to another. The algorithm of the encoder that takes care of Java instances translation to
an ACL is given in Figure 6.12. As described, the method generateFrames generates a
(sub) frame for every member of the object. For example, for an instance of the action,
Offer, a frame (in this case expressed in SLO) is generated which takes the form (Offer
(Price :value e :currency c) :validity v). In order to fill the values of the slots of the
frame, the method fillFrame is called. This function checks whether a member is of a
primitiveType, such as String, Float and Boolean, or a complex type. For every complex
type, such as Price, a new (sub)frame is generated.

Based on the language, represented by currentLanguage, and the ontology
mapping file, represented by currentOntology, the appropriate parts of the content
are written. When using SLO, the Price concept is represented by (Price :value
"19.90” :currency "EUR?”). Using XML, the concept Price is represented as <Price
value="19.90" currency="EUR"/>.

6.4.2.2 Content Decoding

When an agent receives a message, the content has to be translated into the internal model
of the agent. For example, when receiving a message filled with the content: (Offer :id 1
(Price :value ”19.90” :currency "EUR”)) the appropriate instances have to be generated.
In this case, instances of the class Offer and Price are generated. The service that takes
care of the translation from content language to internal models, is called the decoder.
The algorithm of the decoder is given in Figure 6.13.

As shown, the method decode takes a String representation of the content of a
message as input. It first parses the content into elements, such as frame definition, slot
definition and slot value. Then it calls the method generateObjects. This method gen-
erates an Object belonging to the first frame definition in the content. For example, for
the frame definition of Offer, an object Of fer is instantiated. Next, the member of this
object is filled with the method fillAttribute.

The method fillAttribute, takes a slot and an object as input. The method checks
whether the slot is of a primitive type, such as String, Float and Boolean, or of a complex

168 Chapter 6. Message Content Ontologies

public class Encode {
private Ontology currentOntology;
private Language currentLanguage;

ﬁﬁblic String encode(Object obj) {
return generateFrames(obj);

}

public String generateFrames(Object obj) {
String result = currentOntology.generateFrame(obj.getClass());
(for every member in obj) result.append(fillFrame(member));
return result;

public string fillFrame(Member member) {
if (member.getType() in currentOntology.primitiveTypes) value = member.getValue();
else value = generateFrames(member.getValue());
return currentLanguage.translate(value);

}

Figure 6.12
Simplified Java code for generating (i.e. encoding) the content of a message.

type. When the slot is of a complex type, the method generateObjects is called, in order
to acquire a reference to one or more new objects. Finally, the appropriate getter method
is invoked, to fill the value of the slot with either a value or references to other objects.

Discussion The above described encoding and decoding methods are necessary for
agents that are not equipped with an inference engine. If the agents were equipped with an
inference engine, the state of the agent could be stored in an explicit knowledge base. The
operations on this knowledge base necessary for communication take care of message
composition and decomposition.

The question remains, when to apply the described encoding and decoding mecha-
nism and when to equip an agent with an inference engine. Several criteria can be consid-
ered, such as speed, size and flexibility. Speed can be seen as the time needed to develop
an agent and the time needed to perform a communicative act.

An agent equipped with an inference engine and an explicit knowledge base is likely
to be larger then an agent equipped with the ontology mapping process. These criteria
can be considered when working with mobile agents and agents on mobile devices. In
agent transport, one wants to keep the footprint of agents as small as possible. On mobile
devices, there is only a limited size for storage and limited speed for operation.

When compiling an ontology into the actual agent, it is harder to alter the ontology.
This means stopping the agent, generating a new ontology, compile and deploying the
agent, and restarting. A knowledge base is easier to manipulate and it can be transported
to other agents.

6.4. Operationalization of Ontology-based Communication 169

public class Decode {
private Ontology currentOntology;
private Language currentLanguage;

public Object decode(String content) {
Elements elements = currentLanguage.parseLine(content);
return generateObjects(elements);

function Object generateObjects(Elements elements) {
Object result = currentOntology.generateObject(elements.next());
(for every slot in elements) fillAttribute(slot, result);
return result;

}

public void fillAttribute(Slot slot, Object result) {
if (slot.getType() in primitive Types) slotValue = slot.getValue();
else slotValue = generateObjects(slot.getValue());
invokeMethod(result, "set” + slot.getName(), slotValue);

}

Figure 6.13
Simplified Java code for interpreting (i.e. decoding) the content of a received message.

6.4.3 Application of Bean Generator

The use of the Bean Generator has been reported in a number of publications and appli-
cations. One of them is the Financial Speller service, which provides financial reports (in
textual form) containing predictions concerning deposit or credit/investments, taking into
account a fixed interest rate and payments, and three operations to calculate depreciation
charges over the calculating interval?®.

The Budapest Library Agent deals with book search and scans in the National Szch-
nyi Library [Varga and Hajna, 2003]. The agent holds a register of user preferences in the
form of interest records. On a daily basis, the agent checks if there are new books in the
library and compares them to interest records. If there is a match the agent sends an email
to the user of the interest record. The main concepts are interest record, bibliographic
record and bibliographic query. the main actions are related to registering and ma-
nipulating user interest, searching the library and scanning for new material.

The German research program “Intelligent Agents in Real-World Business Ap-
plications” is concerned with the application of agents for business and economic re-
lated tasks?. One of the domains modeled with the use of the is manufacturing logis-
tics [Dinkloh and Nimis, 2003]. Typical concepts in the manufacturing logistics domain
are material, operations, machines and cycle and assembly times*’ [Frey et al., 2003].

28See http://sas.ilab.sztaki.hu/wsid.
29See www.realagents.org.
30See www.ipd.uka.de/KRASH/index.html.

170 Chapter 6. Message Content Ontologies

Other not (yet) reported domains include information exchange at the Rotterdam
Harbor, hospital logistics, ontology negotiation and crisis management.

6.5 Legal Advisor

In this section we show the application of the message content ontologies and the above
described approach in the domain of European Competition Law. We choose another
domain then the Musicshop in order to show the variety of message content ontologies.

European Competition Law focuses on determining what law system(s) and rules
are applicable in case of international business. Law systems include for instance national
competition law and European competition law. Whereas rules include acts, statutes, reg-
ulations, directives, treaties, etc. For example, a company from country A wants to take
over a company situated in country B. The question then is, which laws and rules are
applicable when doing business on an international level?

There are several methods to enable companies to determine which laws and/or
rules are applicable. One way is to look at the transaction amount of a take-over. This
can determine whether European Law or national law is applicable. Another way is to
look at the impact of the take-over with regard to the (European) competition. This can
determine whether this take-over can be granted. Finally, does a take-over result in a
dominant position of power with regard to the European Competition. If so, the take-over
might not be granted.

With the project, we developed three types of agents, the law expert, personal law
assistant and the law services broker. The law expert can determine whether a specific law
is applicable, based on information and facts related to the location, the sort of agreement,
etc. between companies. The personal law assistant assists end-users or other agents
representing companies, to consult the system. Finally, the law services broker forms
the one-stop shop to other agents, by mediating between the personal law assistant and
the expert agents.

In the remainder of this section, we discuss the architecture of the system, message
content ontology design and a simple scenario.

6.5.1 Architecture

The system is composed of different types of agents: the law expert agent, the law ser-
vices broker and the personal law assistant. The multi-agent architecture is drawn in
Figure 6.14.

6.5.1.1 Law Expert Agent

The law expert agents have the necessary knowledge about parts of European competition
law. It means that they can reason about a part of a legal domain and exchange their
finding with other agents. The law expert agents are able to agree on certain legal practices
applicable to the question posed to them by the personal law assistant. In order to offer

6.5. Legal Advisor 171

personal law
assistant

"consultation"

user

law expert

delegate("legal problem"
gate('legal p agent

consult("legal problem")

register("services")

law services
broker

Figure 6.14

The Legal Advisor multi-agent architecture showing the agents involved: the law expert
agent, the law services broker and the personal law assistant, and their interactions. The
law expert agent is drawn as a prototype for the the web expert, the article expert and the
rules expert. The “consultation” between the law expert agent and personal law assistant
are based on a sequence of Tell (of type directive) and Answer (of type representative)
sequence, based on the FIPA-Request protocol.

their services the agents register their competences at the law services broker. The design
of a law expert agent is given in Table 6.6.

The first task of a law expert agent, i.e. register itself at the law services broker,
is handled by the environment model. This is comparable to the platform life-cycle as
discussed in Section 3.4.1 (p.63). The law services broker uses the registrations of the
law expert agents in order to select the proper law expert agent that can solve the issues
submitted by the personal law assistant. The second task is to provide answers to ques-
tions posed by the personal law assistant. The communication model is responsible for
interaction with the law services broker and the personal law assistant on the basis of
the Legaladvisor message content ontology. In the communication model, the agent uses
the decode and encode functions in order to read and write messages. When a message
is received, the agent first decodes this message from an ACL to the internal format of
the agent, in this case Java instances. The communication model will dispatch the Java
instances to the self model, which will instruct the planner. The planner model puts the
task to provide consultation to the personal law assistant in the agent’s agenda. Finally,
the competence model starts to give consultation to the personal law assistant.

Three types of law expert agents are defined: the web expert, the article expert and
the rules expert. The web expert agent is able to translate a question from the personal
law assistant to a query for a search engine (e.g. Google). To make sure that the results
are within the required domain, certain keywords, such as “law” are added to the search
query. The technology used to wrap around search engines is based on the html analysis
language: WebL (see Section 5.5.1.2). The article expert is able to match a question from

172 Chapter 6. Message Content Ontologies

model function domain
communication interact with law services broker Legaladvisor message content ontology
interact with personal law assistant
competence provide legal advise domain knowledge
self instruct planner law expert agent
planner task selection, plan tasks agent’s agenda
environment register at law services broker the law services broker
Table 6.6

The five models of a generic law expert agent representing its capabilities split up in
function and domain. The web expert, the article expert and the rules expert only differ
from each other on the basis of the task provide legal advise and domain knowledge in
the competence model.

the personal law assistant to an XML annotated set of laws. We used an “ad hoc” article
annotation. A formalized schema for annotation is METAlex3!, which is used in markup
of legal sources, such as the Rome Statute, Belgian Income Tax Law, Dutch Corporate
Tax Law and Dutch Penal Code.

The rules expert consults a SWI-Prolog-driven knowledge base, which is able to
reason with a set of production rules. If the reasoner has insufficient information about
the legal situation, it sends a message back, asking for more specific information. To be
able to query the Prolog KB from within the agent, the JPL3? library is used.

After interviews with legal experts, it appeared that there are no knowledge bases
available that cover European Law. The decision was made to use an available knowledge
base, describing a set of law articles about the “opium laws” in the Netherlands, provided
by the Department of Computer Science and Law of the University of Amsterdam?*.

6.5.1.2 Law Services Broker

The law services broker functions as a central hub in the system, it has a notion of existing
law expert agents and is able to delegate questions to the law expert agents that are posed
by the personal law assistant. Every law expert agent has to register at the law services
broker. The “location” of the law expert agents is maintained by the environment model.
The “services” of the law expert agents is maintained by the competence model.

On the basis of a matching strategy (such as pattern matching) and a question of
a personal law assistant, the law services broker selects a law expert agent. The law
services broker will delegate a consul to the selected law expert agent. The design of a
law services broker is given in Table 6.7.

31See www.metalex.nl.
32See http://sourceforge.net/projects/jpl.
33See www.Iri.jur.uva.nl.

6.5. Legal Advisor 173

model function domain

communication interact with personal law assistant Legaladvisor message content ontology
interact with law expert agents

competence register services of law expert agents available service
match user question with service matching strategies
delegate consult type of questions

self instruct planner law services broker

planner task selection, plan tasks agent’s agenda

environment register law expert agents available law expert agents

Table 6.7

The five models of the law services broker representing its capabilities split up in function
and domain.

model function domain
communication interact with law services broker, ~ Legaladvisor message content ontology
interact with law expert agents user profiles
interact with user
competence consult law services broker, the law services broker
consult law expert agent, domain knowledge
query users, present results
self instruct planner personal law assistant
planner task selection, plan tasks agent’s agenda
environment locate law services brokers law services brokers, law expert agent

Table 6.8
The five models of the personal law assistant.

6.5.1.3 Personal Law Assistant

The personal law assistant is the agent with whom the end-user of the system interacts.
The communication models maintains a user profile of the user and processes interaction
with the user. Furthermore, this model interacts with the law services broker and law
expert agents selected by the law services broker on the basis of the Legaladvisor message
content ontology.

The competence model supports the user to consult the law services broker and law
expert agents. Based on answers a user has given to queries, the personal law assistant can
provide domain knowledge to law services broker and law expert agents. The answers of
the law expert agents agents are presented as results to the user. This is operationalized by
a web service which enables the user to provide its input. Furthermore, results of consults
can be displayed. In Table 6.8, the design of the personal law assistantis given.

6.5.2 Message Content Ontology Design

By combining the ontology design of the Protégé tool with the Bean Generator, it was
possible to create a Java object hierarchy which is used by the agents in the system.
We will now look at the design of the LegalAdvisorOntology. A part of the ontology as

174 Chapter 6. Message Content Ontologies

designed in Protégé is given in Figure 6.15.

The LegalAdvisorOntology ontology contains a limited set of classes on the basis
of the Minimal Ontology, in order to balance the expressive power of the ontology and
the competences of the agents, which are in this case limited. Reason for this is that the
agents have access to services with limited functionalities.

Conforming to the Minimal Ontology, we first defined subclasses of type Action.
These subclasses are Ask, AskYesNo, AskOption, Register, Consult, Delegate, Tell, Tel-
[YesNo and TellOption. The action Ask is applied by the expert agents to inquire informa-
tion. This action is specialized into AskYesNo, to inquire boolean questions and AskOp-
tion, to inquire for one or more options. Register, which is used to register agents at the
broker. Consult is used by the UserAgent to consult the broker agent. Delegate is used
by the BrokerAgent to delegate a legal problem to one or more expert agents. 7ell is used
to answer an Ask action. Similar to the Ask action. Tell is specialized into TellYesNo and
TellOption.

Next we defined the subclasses of type Concept: Option, LegalService and Legal-
Problem. The concept Option defines the possible options used in the action AskOption.
LegalService is a description of a service offered by an ExpertAgent. LegalProblem is a
simplification of the problem owned by a UserAgent.

6.5.3 Simple Scenario

This section describes a simple example scenario to show how the agents within the sys-
tem interact with each other, using the LegalAdvisorOntology. The scenario starts when
the agent platform has been launched and the agents have been created. Each agents has
to register its services at the law services broker. An example message sent from the
webagent to the broker is:

web expert to law services broker: (Register :legalservice (LegalService :type “keywordsearch”
:description ”Googlesearch™))

The message shows a description of the service that the agent can offer. As men-
tioned above, we did not use a full-fleshed ontology. Therefore, the service description is
a very basic one.

The next step in the scenario is when a user enters information into a web form and
submits this to the personal law assistant. Unknowing what the (semantic) content of the
user’s information is, it starts asking the law services broker for a suitable expert agent.
The agent does this by forwarding the user’s question to the broker:

personal law assistant to law services broker: (Consult (LegalProblem :domain “competition
law”
:description (sequence “European” ” competition” "law” regulations”))”

The broker analyzes the content of the message, and tries to find an appropriate
agent. This is done by applying a basic lookup mechanism in the broker’s register. In this
case, the broker decides to delegate the legal problem to the web expert agent. Therefore,

6.5. Legal Advisor 175

Legaladvisor
Message Content Ontology
TellOption
Tell
1 TellYesNo
Option
+value[1] : String
AskOption Ask

AskYesNo

AV

Action

Concept

Register _| >
ZAN 1 ya)

LegalService
+type[1] : String
+description[1] : String Consult
1.”
LegalProblem
+domain[1] : String) Delegate

+description[1] : String [ragent[1] : String

Figure 6.15
The Legaladvisor Message Content Ontology design for the Legal Advisor system, based
on the Minimal Ontology.

the webagent is selected, since it can ask any question to Google. Whether the answer of
Google is usable is to be decided by the end user.
This decision is then sent to the web agent by the message:

law services broker to web expert: (Delegate (Consult (LegalProblem :domain “competition
law”

:description (sequence “European
assistant”)

3 2 9

competition” “law” regulations”)) :agent “personal law

This message tells the web expert that it should find an answer to the specified
LegalProblem and give the answer back to the agent "useragent”. To find an answer to
the LegalProblem, the web expert consults Google. The answer of Google, i.e. a list of
URLs is translated into a sequence of the object Option and embedded into a TellOption
action:

176 Chapter 6. Message Content Ontologies

web expert to personal law assistant: (TellOption :options (sequence (Option
value: “http://europa.eu.int”)(Option value: http://www.ellispub.com”)(Option value:
“http://www.etsi.org”) ...))

From there, the user agent presents the received answer to the end-user.

6.5.4 Evaluation

Although there have been a few concessions to the original design, we succeeded in build-
ing a stable and fully functional law assistance agent system. The system makes use of the
relative simple message content ontology in order to show the generation and application
of message content ontologies on a general level. The agents’ functionality is limited, due
to the unavailability of usable legal knowledge bases. We did not model an ontology that
fully represents a legal domain. For example, in the musicshop example, the notion of a
CD is relatively well-defined. However, the notion of a legal problem in the Legal Advisor
System needs to be further elaborated. Furthermore, we only paid attention to the type of
conversations, i.e. Tell-Answers combinations.

The legal services and legal problems are expressed as keywords. Real life concep-
tualization of legal services and legal problems need more elaborate constructs. For this,
existing ontologies and knowledge bases could be included, such as the CIA world fact-
book that contains basic information related to countries, CYC containing common sense
knowledge and various (in DAML represented) information sources®*. The problem with
this, however, is that conceptualization conflicts need to be resolved.

A drawback of the presented approach is that it does not consider complex con-
straints between concepts. It is not (yet) possible to define what an allowed sequence of
messages is. For example, a message containing the action class of type Ask, should be
followed by a message containing an action class of type Tell. If we want to do so, we
need to enhance the ontology mapping mechanism, in such a way that constraints can be
stored in the ontology-mapping file.

6.6 Discussion

In this chapter, we addressed the problem of how agents can handle message-based com-
munication. We have defined a framework for message content ontologies containing a
Reference Model in order to provide semantics in message-based communication. The
framework is built up out of a generic part and a specific part. The generic part is repre-
sented by an Agent Communication Meta Ontology that defines types of performatives
and protocols based on (human) communication theory: speech acts and conversational
interaction. The specific part is composed of a collection of domain dependent ontologies
that describe the domain of the conversation, performatives, protocols and agent roles.
We described and extended an existing categorization of speech acts for the definition of

3See www.cia.gov/cia/publications/factbook, www.opencyc.org and www.daml.org.
35Constraints on slots can be made, with facets as described in Table 6.5.

6.6. Discussion 177

performatives. Furthermore, in order to show the variety of conversation protocols, we
adjusted three existing protocols (i.e. Query, Request and Auction) and added two new
ones (Negotiation and Supervision).

The Agent Communication Meta Ontology defines the subjects of agent commu-
nication: concepts, performatives, protocols and agent roles. We showed that a message
content ontology is an instantiation of the Agent Communication Meta Ontology, which
can be mapped onto a class diagram and specified in detail. From a theoretical point
of view, it is appealing to define as much information as possible into a “full fledged”
Reference Model. However, when designing an agent that is capable of handling this
information, a lot of overhead emerges (due to the need for ontology operations and pre-
negotiation activities). When making use of a full fledged Reference Model, the question
is if all its concepts and relations are needed.

Based on our framework, we defined a “Minimal Ontology”, which can be used in
more pragmatic agent solutions. The ontology contains the classes Concept and Action,
and the relation AllowedConcept. We explained that agents without an inference engine
need a representation of an ontology in terms of their internal representation (such as Java
beans) and means (such an ontology mapping file) to map instances of an ontology into
their internal representation. On the basis of the presented tool, encoders and decoders
can respectively be used for translating an agent’s internal model to agent communication
utterances and vice versa. However, in this approach, the ontology and ontology transla-
tion is hard coded. This means that if an ontology changes, the java code for the agent
needs to be regenerated and the agent needs to be deployed again.

Both the construction of the Message Content Ontology Framework and the Mini-
mal Ontology can be seen as a first step towards the standardization of ontologies in agent
communication and conversation. A possible method to define message content ontolo-
gies starts with choosing an Agent Communication Meta Ontology as a Reference Model,
such as defined in Section 6.3.1. Next, based on generic classes of the Agent Communi-
cation Meta Ontology, conversation specific concepts of a message content ontology need
to be defined (see Section 6.3.4.1). Then, these concepts can be specified in more detail
by defining their properties (or attributes) and relations (see Section 6.3.4.2). Finally, on-
tology operations (such as encoding and decoding, see Section 6.4.2) have to be defined
and added into an agent model.

Future research on message content ontologies includes elaboration on means to
represent both syntax and semantics of message content ontologies, handling issues re-
lated to accessibility, i.e. how to store ontologies and how to retrieve them, and from a
methodological point of view, addressing problems related to redefinition of ontologies
should be exploited.

For the case study, we designed a system with an information-driven character
(cf. [Galbraith, 1973]) using notions of information processing actions (i.e. ask and tell).
In the future, dedicated minimal ontologies suited for specific processes or specific do-
mains can be defined. Other interesting domain are when agents with a knowledge-driven
character communicate at the knowledge level. For this, content ontologies could be de-
fined that can handle concepts like competences, knowledge, methods and protocols. A
starting point can be UPML [Fensel et al., 1999b], see Section 5.2.

178 Chapter 6. Message Content Ontologies

An alternative approach to ontology handling is having agents to manipulate exist-
ing ontologies and even to learn new ones. For example, agents could negotiate on the
meaning of concepts and relations. Another alternative approach to ontology handling
is that the agent sends serialized Java code® that represents (parts of) an ontology. The
receiving agent can process this code into its own ontology model. Next to automatic gen-
eration of Java beans, semi-automatic generation of Java classes that define the behavior
of agents can be considered. For example, encoders and decoders could take care of all as-
pects of conversation management. Tasks of conversation management are to keep track
of state of conversations, follow interaction protocols and negotiate meaning. Probably
the method of generating static code can be useful in well defined situations. However,
when agents operate in dynamic environments and need to change their strategy and mod-
els at runtime, other techniques such as maintaining an explicit message content ontology
and behavior patterns are to be considered.

36Within Java it is possible to translate (i.e. serialize) the structure and state of objects into a transportable
format.

Chapter 7

Conclusions

In this book, we studied the use of human organizational principles for multi-agent archi-
tecture design. We explored the use of division of labor and coordination as principles for
multi-agent design, which resulted in a framework for agent organizational design (Chap-
ter 2). Next, we investigated how agents can make use of coordination mechanisms which
resulted in an interoperability framework that identifies the problems that arise when hav-
ing heterogeneous agents collaborate with each other. A selection of alternatives to solve
interoperability problems, i.e. coordination strategies and ontology-based communication
has been discussed (Chapter 3, 5 and 6). Finally, we presented a conceptual agent model
that takes into account the capabilities of an agent(Chapter 4).

7.1 Application of Organizational Decomposition Princi-
ples and Coordination in Multi-Agent Systems

In order to answer the first research question How can decomposition principles (i.e.
division of labor) and coordination be applied in multi-agent systems?, we assumed that
despite the differences between intelligent agents and humans, mechanisms and patterns
from the field of organizational design can be used as the basis for multi-agent architecture
design.

In Chapter 2, we studied a number of coordination mechanisms (“Direct Supervi-
sion”, “Standardization” and “Mutual Adjustment”) and organizational structures (“Ma-
chine Bureaucracy”, “Professional Bureaucracy” and “Adhocracy”). The result of this
study is an organizational design framework, which consists of four perspectives: “task”
that deals with tasks and task relations, “operation” which consists of objects, technical
activities and jobs, “coordination” that is concerned with the control of technical activ-
ities through management activities and “organization” which deals with job allocation,
positions and units. A collection of organizational design steps was presented contain-
ing three steps: process analysis, operations design and organizational design. To support
the organizational design step, we extended “organigrams” with the notion of agents for

180 Chapter 7. Conclusions

representing a multi-agent system’s organizational structure. Organigrams support the vi-
sualization of organizational structures by showing the agent staff, the grouping of the
agents and the authority structure that connects the units and individual agents.

In order to choose an appropriate organizational structure, we used the following
properties that distinguish between organizational structures: (1) environment (which can
be stable, predictable or dynamic), (2) task nature (routine, skilled or innovative), (3) ac-
tivity allocation (static, pigeonholing or innovative), (4) form of organization (steep, flat,
none), (5) desired coordination mechanism (Direct Supervision, Standardization or Mu-
tual Adjustment), (6) form of decision-making (centralized or decentralized) and (7) type
of agents (controllable, cooperative or autonomous). For example, the Machine Bureau-
cracy can be applied when the environment is stable, the task nature routine, the activity
location static, the decision-making centralized and the agents controllable.

A case study on distributed supply chain management shows the process from task
decomposition via organizational design to three architectures of multi-agent system de-
signs based on Mintzberg’s organizational structures. Due to its repetitive nature, sup-
ply chain management can be seen as information-driven. Therefore, we applied Direct
Supervision as a coordination mechanism, which is comparable to control strategies in
conventional system design. If we see supply chain management as competence-driven,
i.e. the process relies on the problem-solving skills that agents have, other organizational
structures and coordination mechanisms can be applied. With the “pigeonholing” pro-
cess, the competences of the agents can be categorized and mapped on a categorization
of predetermined situations.

7.2 Coordination Mechanisms for Multi-Agent Systems

To answer the question How can agents make use of coordination mechanisms?, we inves-
tigated coordination mechanisms on a general level, using them as a metaphor to analyze
control issues in multi-agent systems (see Chapter 2). In order to study the dynamics of
the coordination mechanisms and means to implement them, we provided a framework
for agent interoperation and elaborated on its levels in Chapters 3, 5 and 6.

The interoperability framework consists of four interoperability levels: “technical”,
“syntactic”, “semantic” and “coordination”. The first three levels correspond to traditional
interoperability structures in agent communication, where the emphasis is on message
transport, languages and ontologies. We added the coordination level in order to regulate
communication patterns and the flow of information. To enable interoperability, we con-
structed a framework to abstract technique, representation, concepts and strategy. Issues
handled on the “technical interoperability” (or transport) level are related to using shared
message transport mechanisms and network protocols. Decisions related to envelope-
encoding and message content languages are covered on the “syntactic interoperability”
level. Semantic interoperability means that agents use shared ontologies in communica-
tion. A Reference Model for providing semantics to agent communication and a method
to design message content ontologies was discussed in Chapter 6. Finally, decisions re-
lated to agents using shared procedures (e.g. “every agent has to register its services”),

7.2. Coordination Mechanisms for Multi-Agent Systems 181

coordination strategies and the related notion of organizational roles (e.g. “Manager” and
“Librarian”) are covered by the “coordination interoperability” level. In Chapter 3, we
discussed coordination mechanisms that can be applied on this level.

In order to assist agent engineers and Manager agents in reasoning about coordina-
tion, the following strategies have been represented in the form of coordination strategy
methods: “Direct Supervision”, “Standardization of Work™ and “Mutual Adjustment”.
Agents that need coordination can agree to commit to one or more of these coordination
strategies, supported by a coordination ontology that models the concepts and relation-
ships describing the coordination domain. From experiments with the three coordination
strategies we made the following observations: Direct Supervision shows a centralized
model, i.e. all coordination knowledge (i.e. strategic and supervision) is concentrated in
the Manager, who takes care of managing the relations between activities and Operators.
In Standardization of Work, we can see a pattern of a decentralized model (Knowledge
about coordination is distributed among the Operators), where the Manager only plays
the role of a strategic planner. In Mutual Adjustment, there is no division of roles into
Operators and Managers. As a result, the collaboration pattern shows a broadcast com-
munication model where every agent tries to communicate with all available agents.

There are several considerations for choosing the appropriate strategy to use, such
as the number of (available) agents and the nature of the task. When a task can easily
be decomposed so that the system can be designed as a monolithic system, no coordina-
tion structure needs to be used. “Direct Supervision” is a good candidate when there is a
limited set of agents, because the Operators do not need to be equipped with additional
functions to reason about instructions as within Standardization of Work. In the latter
strategy, the nature of the tasks is repetitive and can be solved in a distributed manner.
In relation to the other two strategies the “Direct Supervision Manager” is the most ex-
pensive Manager, because it has strong couplings with all the Operators. Furthermore, it
becomes more complex when the number of agents or tasks grows. When the number of
agents is dynamic, “Standardization of Work™ is to be considered. If the environment is
dynamic, the nature of the tasks is heterogeneous and the number of agents is open then
“Mutual Adjustment” should be applied. When Operators do not want to agree on having
a Manager or the task description is not present, this strategy could be applied. These
agents (or Operators) are the most expensive agents.

In Chapter 5, we addressed the problem of interoperation within the IBROW ar-
chitecture, which provides support for the composition of applications from existing
(web)services that reside on the Web. The intelligent agent metaphor enabled us to de-
scribe the services and their collaboration within the architecture as agents using roles
and behaviors. Using the notion of separation of concerns, specialized agents are de-
fined that operate within functional spaces. A lesson learned is that using separation of
concerns instead of integration into one large monolithic system helped us to cluster het-
erogeneous services into one architecture. In order to enable the services (i.e. agents) to
interact with each other, we applied common standards and available technology, such as
FIPA compliant communication and procedures, agent toolkits and web technology. The
agents collaborate using specialized ontologies and collaboration patterns on top of the
interoperability framework. In addition, the Manager within the IBROW architecture uses

182 Chapter 7. Conclusions

the “pigeonholing” process to select Operators. The advantage of having agreed on stan-
dards, agent designers only have to deal with the coordination level of the interoperability
framework. Within this level, they only have to specify ontologies and collaboration pat-
terns.

In the “conference submissions” scenario we addressed the problem of having to
classify over 600 submissions for ECAI2002 by hand in order to distribute them to re-
viewers. In our approach, we showed how to automate this process using a collection
of configured “Problem-Solving Methods”. This process is represented by an applica-
tion configuration constructed by the broker, which is translated by the Manager into
a “Multi-Agent Plan”. The execution of this Multi-Agent Plan showed how Problem-
Solving Methods from three libraries (i.e. data-transport, document analysis and classifi-
cation) can interact with each other. Using graphical inspection tools via the agent con-
sole, we inspected parts of the dynamics (communication and internal behavior of agents)
of the IBROW architecture.

The problem of how agents handle message-based communication was studied in
Chapter 6. As a solution, we defined the “Message Content Ontology Framework™ con-
taining a theoretical “Reference Model” for an ontology-based communication, in which
the meaning and intention of message contents is specified in “Message Content Ontolo-
gies” that provides semantics in message-based communication. The Message Content
Ontology Framework consists of an “Agent Communication Meta Ontology” that defines
types of performatives and protocols based on the Speech Acts Theory and Conversa-
tional Interaction Theory originated from (human) communication theory. The “Refer-
ence Model” is an instance of the “Agent Communication Meta Ontology” and consists
of agent communication ontologies that describe the domain of the conversation, per-
formatives, protocols and agent roles. Based on the framework, we defined a “Minimal
Ontology”, which can be used in pragmatic agent solutions. We argued that agents with-
out an inference engine need a representation of an ontology in terms of their internal
representation (such as Java beans) and means (such as an ontology mapping file) to map
instances of an ontology into their internal representation. Based on the presented tool,
encoders and decoders can be used for translating an agent’s internal model to agent com-
munication utterances and vice versa.

Both the construction of the Message Content Ontology Framework and the Mini-
mal Ontology can be seen as a first step towards the standardization of ontologies in agent
communication and conversation. A method to define message content ontologies starts
with choosing an Agent Communication Meta Ontology as a Reference Model. Next,
based on generic classes of the Agent Communication Meta Ontology, conversation spe-
cific concepts of a message content ontology need to be defined. Then, these concepts
can be specified in more detail by defining their properties (or attributes) and relations.
Finally, ontology operations (such as encoding and decoding) have to be defined and
added into an agent model.

As a result of the studies carried out in Chapters 3, 5 and 6, we showed the levels
of interoperation that are needed to support coordination mechanisms. Agents can make
use of coordination mechanisms by coordination strategy methods and agreeing (stati-
cally or dynamically) on what role to play in a coordination strategy. We argued that

7.3. Agent Design Principles 183

organizational structures and coordination strategies are of interest to agent engineers be-
cause they can be used to allocate tasks to agents and control agents within multi-agent
systems. If organizational structures and coordination PSMs are stored in libraries, agent
engineers can model agent behaviors according to these coordination patterns. In addi-
tion, Managers can be equipped with knowledge to select a coordination strategy and to
reason about it. Furthermore, a group of agents could negotiate about which coordination
strategy to apply and how to execute it.

7.3 Agent Design Principles

The question How can the capabilities and functionality of an individual intelligent agent
be analyzed and designed? is answered by the development of the Five Capabilities (5C)
model (discussed in Chapter 4). The SC model is a conceptual framework filled with a
selection of generalized types of agent competences and provides design principles for in-
dividual agent design. The model defines five dimensions of agent intelligence: “commu-
nication model”, “competence model”, “self model”, “planner model” and “environment
model”.

Each of the five models can play an important role in the development of an intelli-
gent software agent. The analogy could also be applied to intelligent physical agents like
robots. How each of the models will be filled in may vary depending on the particular
kind of agent or the particular application. To illustrate variations of agents, we designed
a number of agents with the 5C model. In Section 5.5.2.3, we showed the design for
the Manager of the IBROW architecture. This agent is capable of interacting with other
agents based on available message content ontologies. The competence model is able to
construct Multi-Agent Plans, negotiate with Operators, execute Multi-Agent Plans, and
negotiate with the Reconfigurator. The management of the agent’s life cycles (cf. Sec-
tion 3.4.2) is handled by the self model. The planner model is responsible for planning
the actions required to follow the life cycles in the agent’s agenda. Finally, the environ-
ment model is capable of searching for Operators and storing them in a repository of
known Operators. Information related to relations with reconfigurator and user agents is
also stored in the environment model. Furthermore, we showed how the 5C model can be
implemented on top of existing agent technology, such as the JADE toolkit.

In order to show the overhead (due to pre-negotiation discussion) when applying
the theoretical Message Content Ontology Framework, we analyzed the required func-
tionality and knowledge, which resulted in an agent design that uses all five models (see
Section 6.3). When putting ontology-based communication in operation, taking into ac-
count the current state of the art and the level of complexity of current multi-agent sys-
tems, we showed that only the communication and competence model are needed (see
Section 6.4). Based on the “Bean Generator” tool, we showed that parts of the communi-
cation model can be generated automatically. This approach supports the idea that next to
standardization of communication content, also standardization of communication han-
dling is needed.

184 Chapter 7. Conclusions

When analyzing the functionality of an intelligent agent, all five models can be used
to identify functionality. Given the current state of the art, most technical agent designs
only need a “communication model” for interaction with other agents and a “‘competence
model” to offer their services. We argued this in Section 6.5, where the “Law Service
Broker” is relatively simple and the “self model”, “environment model” and “planner
model” are seen as internal functional overhead. The cost to define and implement sep-
arate models for knowing the agent’s goal, maintaining models of other agents and exe-
cution strategies can be larger than putting these functionalities into the communication
and competence model. When there is no explicit reasoning on the agent’s goal, the com-
petence model maintains models of other agents, and the communication model handles
execution strategies. In spite of these pragmatic simplifications the 5C model provides a
powerful conceptual framework for reasoning about agent architectures.

7.4 Discussion and Future Research

To answer the research questions of this book, we (1) conducted a conceptual analysis
of organizational concepts, organizational models and coordination mechanisms, (2) pro-
vided a framework for agent interoperation and (3) provided a conceptual framework for
analyzing and designing the capabilities and functionality of an intelligent agent. Still
several problems associated with the work presented remain.

Future research related to the agent organization framework may include elaborate
research on specific organizational design theories and methods. In our work only a se-
lection of organizational principles have been explored. A future agent organizational
framework should assist designers in addressing more precisely an organization’s overall
task and environment. Furthermore, the framework could assist in the formalization of
the overall behavior of a distributed intelligent system in terms of (human) organizational
structure and behavior. More predictable and controllable behavior of agents could lead
to reduction of the variability of systems. However, one of the prominent properties of
agent intelligence is autonomy, i.e. independence. One of the challenges of individual
agent design suited to operate within agent organizations is to find a balance between
independence, predictability and controllability.

In order to inspect parts of the dynamics of a multi-agent system, such as the
IBROW architecture, we used the “agent console”. With the agent console, we can gain
insights into the communication and internal behavior of agents. However, the expres-
sive power of these graphical inspection tools is limited. Furthermore, when testing or
debugging a multi-agent system, it is still difficult to start, restart, stop or suspend agents.
Therefore, there is a need for more elaborate inspection and control tools in the form of
intelligent debugging, where system inspection is on the knowledge level (e.g. “why did
the state of the system change?”) instead of inspecting at the symbol level (e.g. “what was
the content of a message”).

In our work on agent interoperation we concentrated on the semantic and coordi-
nation interoperability layers with the assumption that the technical and syntactical in-
teroperability layer are standardized. In practice this assumption does not hold, because

7.4. Discussion and Future Research 185

there is still many debate about “low level” standardization, such as transport protocols
and communication languages. We first need to solve basic communication problems
before we can focus on interesting aspects of communication, such as negotiation and
bargaining, which can facilitate complex organizational models. One small step towards
enabling complex organizational models is the application of message content ontolo-
gies that define the vocabulary of content of communication. Next step is having agents
exchanging knowledge structures. For this, agents themselves should be able to add mean-
ing to knowledge. A following step could be to support learning amongst agents, e.g. by
feedback.

Most current research on agent models is technology-driven (i.e. on the symbol
level) instead of capability-driven, because the models are based on a specific technology,
infrastructure or a multi-agent environment. However, the fact that agents can be designed
independently of each other and that agents posses a form of intelligence are promises of
agent technology. At this moment, the available technology seems to restrict research on
agent competences. For example, little is known about learning agent organizations. Both
the research on agent models and multi-agent models should move from technology to
capability (i.e. knowledge level).

From an agent organization point of view, the organizational structure “Adhocracy”
using “Mutual Adjustment” as a coordination strategy is the most appealing. Given the
current state of the art, the application of “Adhocracy” and “Mutual Adjustment” comes
with many problems. For example, our model of “Mutual Adjustment” is based on a
simple broadcast model, which does not guarantee success. In more complex situations,
a more elaborate model for “Mutual Adjustment” needs to be designed. An extension to
our model can be based on negotiation, where agents bargain or argue on coordination
matters.

Adhocracy can typically be used in self-organizing applications, i.e. applications
that can evolve in either time or space in response to dynamically changing requirements.
In this type of application, there are typically several interacting software components
(agents) that can act independently and in collaboration with each other, and with no
central entity. If we would follow this definition as a metaphor, we would only have
to specify a problem and a rough sketch of a problem-solving approach and the agents
themselves would be able to elaborate on the problem-solving approach, allocate tasks,
coordinate flows and solve the problem. However, before we can move from classical
hierarchical decomposition and typical static control components to such an agent system,
we need to give engineers and end-users a sense of control and means to guarantee that
the system will achieve its goals.

When moving to real dynamic systems, agent engineers and end-users need to be
convinced by the agent community that systems composed of self-organizing agents will
lead to more robust, flexible, cheaper and more reliable systems. If we would follow this
definition literally then there will be systems that can solve problems that are detected by
the system itself, without any human intervention. In summary, the field of multi agent
systems show promising roots to application that perform complex tasks but many tech-
nical and syntactical problems remain.

Summary

The general question addressed in this book How can human organizational principles be
used for multi-agent architectures? is answered by an exploration of the possibilities to
design multi-agent systems as artificial organizations. Three research lines are presented:
organizational modeling and coordination, interoperability and agent models. Organiza-
tional modeling and coordination is concerned with how resources (i.e. people or agents)
can be identified and related to each other. The (human) organizational principles we
explored are: “division of labor” and “coordination”. Division of labor consists of de-
composing the work (or goal) into various distinct tasks. Coordination refers to managing
relations between these tasks to achieve the work. The patterns of division of labor, re-
sponsibilities (i.e. people who do the work), clustering of responsibilities into units and
coordination between units can be defined by “organizational structures”. Organizations
are complex entities formed to overcome various limitations of individual agencies, such
as cognitive, physical, temporal and institutional limitations. The design of an organi-
zation should cover how one or more people are engaged in one or more tasks, where
knowledge, capabilities and resources are distributed. Such a design can be seen as a set
of networks and procedures that link agents, tasks, resources and skills.

Many human organizations can be viewed as information processing systems be-
cause many of their activities are concerned with transforming information from one
form to another. In addition, organizational activity (like receiving orders, reporting and
administrating) is frequently information-driven. Links between human organizations and
computational systems are suggested by Fox, where distributed system are described by
responsibilities of processes (i.e. agents), communication paths and a control regime that
coordinates the whole. Furthermore, Malone and Crowston discusses the influence of
coordination theory in resource allocation, management of unreliable actors, task assign-
ment and information flow management.

Coordination is an essential activity in multi-agent systems, in that it permits agents
to cooperate in order to achieve common goals. Based on division of labor, agents will
perform a number of (specialized) tasks. When agents organized in a multi-agent system
collaborate, they are capable of performing more complex actions than individual agents
can. However, in order to achieve common and individual goals, agents need to interact
in a coordinated manner. This means that an agent should be aware not only of the actions
it can perform and the state it is in at any moment of the execution, but also of the actions
other agents can perform and their states.

188

Chapter 2 presents a framework for multi-agent system design, which is based on
human organizational notions and principles for distributed intelligent systems design.
Organizational notions such as “task”, “control”, “job”, “operation”, “management”, “co-
ordination” and “organization” are framed into an organizational design framework. A
collection of organizational design activities is presented that assists in a task-oriented
decomposition of the overall task of a system into jobs and the reintegration of jobs using
job allocation, coordination mechanisms and organizational structuring.

In order to allocate jobs to positions (i.e. agents), our approach makes use of an
explicit separation of the performance of work and the control over it. “Operators” are
responsible for performing the technical part of work, such as transforming input into
output. “Managers” are responsible for the control over Operators. In order to coordi-
nate Operators, we investigated a selection of coordination mechanisms described by
Mintzberg: “Direct Supervision” where one individual takes all decisions for the work
of others, “Mutual Adjustment” that achieves coordination by a process of informal com-
munication between agents, and “Standardization of Work, Output and Skills”.

Three organizational structures originating from Mintzberg are adjusted in order to
coordinate agents and their work: “Machine Bureaucracy”, “Professional Bureaucracy”
and “Adhocracy”. The Machine Bureaucracy is task-driven, seeing the organization as a
single-purpose structure, which only uses one strategy to execute the overall task. The
Professional Bureaucracy is competence-driven, where a part of the organization will
first examine a case, match it to predetermined situations and then allocate specialized
agents to it. In an Adhocracy, the organization is capable of reorganizing its own structure
including dynamically changing the work flow, shifting responsibilities and adapting to
changing environments. A case study on distributed supply chain management shows the
process from task decomposition via organizational design to three multi-agent architec-
tures based on the three organizational structures.

“Interoperability” is concerned with how to let agents communicate with each other,
how to coordinate agent communication and how to add semantics to agent communica-
tion. Chapter 3 discusses “coordination mechanisms” in the form of “Problem Solving
Methods”, which can assist “Managers” and agent engineers in reasoning about coordi-
nation. Agents that need coordination can agree to commit to one or more coordination
strategies. Underlying the Problem Solving Methods is a “coordination ontology” that
models the concepts and relationships describing the coordination domain. The coordina-
tion strategies are based on the strategies described by Mintzberg.

From experiments with the three coordination strategies, we made the following
observations: in Direct Supervision the coordination knowledge (i.e. strategic and super-
vision) is concentrated in the Manager, who takes care of managing the relations between
activities and Operators. In Standardization of Work, we can see a pattern of a decentral-
ized model (knowledge about coordination is distributed among the Operators), where
the Manager only plays the role of a strategic planner. In Mutual Adjustment, there is
no division of roles into Operators and Managers. As a result, the collaboration pattern
shows a broadcast communication model where every agent tries to communicate with

189

all available agents.

The “IBROW project” (IBROW stands for Intelligent BRokering On the Web) dis-
cussed in Chapter 5, has as goal to develop technologies for (semi-) automatic selection
and configuration of new applications by reuse of existing services. Work on a multi-
agent architecture capable of (semi)automatic reuse of Problem Solving Methods (PSMs)
is discussed. Using the notion of separation of concerns, specialized agents are defined
that operate within functional spaces. The agents within the architecture collaborate using
specialized ontologies and collaboration patterns on top of an interoperability structure.

In a “conference submissions” scenario, we addressed the problem of having to clas-
sify over 600 submissions for the ECAI 2002 conference by hand in order to distribute
them to reviewers. In our approach, we showed how to automate this process using a
collection of configured PSMs. This process is represented by an application configu-
ration constructed by a broker, which is translated by the Manager into a “Multi-Agent
Plan” (MAP). The execution of this MAP showed how PSMs from three libraries (i.e.
data-transport, document analysis and classification) can interact with each other. Us-
ing graphical inspection tools via the agent console, we inspected parts of the dynamics
(communication and internal behavior of agents) of the IBROW architecture.

Chapter 6 focuses on the problem of how to add semantics to agent communica-
tion. Our approach is to look at “ontology-based communication”, in which the meaning
and intention of message contents is specified in “message content ontologies”. In order
to share semantics, agents commit to shared message content ontologies. We present a
“Reference Model” for ontology-based communication based on “speech act” theory. A
pragmatic approach is presented, taking into account the current state of the art in agent
technology, which enables creation and use of message content ontologies to support
ontology-based communication between agents. We describe a tool that assists agent en-
gineers in designing message content ontologies and export them to Java source code.
A case study on Legal Services illustrates conversations between agents based on a law
message content ontology.

An “Agent Model” is concerned with guiding agent engineers in making conceptual,
functional and technical design decisions when designing agents, taking into account typ-
ical agent intelligence competences, such as “autonomy”, “interaction”, “pro-activeness”’
and “reactiveness”. In Chapter 4, we present the “Five Capabilities (5C) model” which
is a conceptual framework based on a generalization of typical agent intelligence compe-
tences. The model defines five dimensions of agent intelligence: “communication model”,
“competence model”, “self model”, “planner model” and “environment model”. Each of
the five models plays an important role for the development of an intelligent software
agent. How each of the models will be filled in may vary depending on the particular kind
of agent or the particular application. It is possible that an agent design is based on the
five models, but the technical model on a simplification.

The 5C model has been the design guide (for capabilities and functionality) for the
development of a series of intelligent agent application prototypes (see Chapter 5 and 6)
and commercial applications. The development of the applications showed that functional

190

as well as technical constraints can be reflected in an intuitive manner along the five di-
mensions, using the notion of separation of concerns. Also several “non-agent” issues can
be taken into account, such as functional constraints and technical/political constraints.
Depending on the requirements of the application one can focus on each capability that
needs attention, without losing oneself in the complexity of the entire design.

Chapter 7 concludes the book by answering the research questions and suggesting fu-
ture work. The research questions are answered by (1) conducting a conceptual analysis
of organizational concepts, organizational models and coordination mechanisms (2) pro-
viding a framework for agent interoperation and (3) providing a conceptual framework for
analyzing and designing the capabilities and functionality of an intelligent agent. Future
research includes extensions to the current agent organization framework, which should
be of assistance in the organizational design decision process to bring coherence between
the patterns of division of labor and patterns of coordination. Future research on the
framework for agent interoperation may include study on agent negotiation in “Mutual
Adjustment”. Finally, the 5C model could be extended with a library of reusable model
components.

Bibliography

[Austin, 1976] Austin, J. (1976). How to Do Things with Words. Oxford University
Press.

[Bailin and Truszkowski, 2001] Bailin, S. and Truszkowski, W. (2001). Ontology Nego-
tiation between Scientific Archives. In Thirteenth International Conference on Scien-
tific and Statistical Database Management.

[Bellifemine et al., 2003] Bellifemine, F., G., C., Trucco, T., and Rimassa, G. (2003).
JADE Programmer’s Guide.

[Bellifemine et al., 2001] Bellifemine, F., Poggi, A., and Rimassa, G. (2001). Developing
multi agent systems with a FIPA-compliant agent framework. Software - Practice And
Experience, 31:103-128.

[Benjamins, 1993] Benjamins, V. (1993). Problem Solving Methods For Diagnosis. PhD
thesis, University of Amsterdam.

[Benjamins and Fensel, 1998] Benjamins, V. and Fensel, D. (1998). Special issue
on problem-solving methods. International Journal of Human-Computer Studies
(IJHCS), 49(4).

[Benjamins et al., 1998] Benjamins, V., Plaza, E., Motta, E., Fensel, D., Studer, R.,
Wielinga, B., Schreiber, A., and Zdrahal, Z. (1998). An Intelligent Brokering Ser-
vice for Knowledge-Component Reuse on the World-WideWeb. In Proceedings of
the 11th Workshop on Knowledge Acquisition, Modeling and Management (KAW 98),
Banff, Canada.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Se-
mantic Web. Scientific American, 284(5):34-43.

[Bond and Gasser, 1988] Bond, A. and Gasser, L. (1988). Readings in Distributed Arti-
ficial Intelligence. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.

[Borst, 1997] Borst, W. N. (1997). Construction of Engineering Ontologies. PhD thesis,
University of Twente, Enschede.

192 Bibliography

[Bradshaw, 1997] Bradshaw, J. (1997). Software Agents, pages 3—46. Menlo Park.

[Carley and Gasser, 1999] Carley, K. and Gasser, L. (1999). Computational Organiza-
tional Theory. Multi-agent Systems.

[Castelfranchi, 1995] Castelfranchi, C. (1995). Guarentees for autonomy in cognitive
agents architecture. In Intelligent Agents: Theories, Architectures, and Languages
(LNAI Volume 890).

[Chavez and Maes, 1996] Chavez, A. and Maes, P. (1996). Kasbah: An agent market-
place for buying and selling goods. In Proceedings of the First International Confer-
ence on the practical Application of Intelligent Agents and Multi-agent systems.

[Corkill and Lander, 1998] Corkill, D. and Lander, S. (1998). Agent Organizations. Ob-
Jject Magazine, 8(4).

[Cranefield and Purvis, 1999] Cranefield, S. and Purvis, M. (1999). Uml as an ontology
modelling language. In Workshop on Intelligent Information Integration, 16th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-99).

[Davis and Smith, 1983] Davis, R. and Smith, R. (1983). Negotiation as a Metaphor for
Distributed Problem Solving. Artificial Intelligence, 20(1):63—-109.

[Dinkloh and Nimis, 2003] Dinkloh, M. and Nimis, J. (2003). A Tool for Integrated De-
sign and Implementation of Conversations in Multiagent Systems. In Workshop on
Programming Multiagent Systems languages, frameworks, techniques and tools (Pro-
MAS 2003) held at the 2nd International Conference on Autonomous Agents & Multi-
agent Systems.

[Eriksson et al., 1995] Eriksson, H., Shahar, Y., Tu, S., Peurta, A., and Musen, M.
(1995). Task Modeling with reusable problem-solving methods. Artificial Intelligence,
79:293-326.

[Esteva et al., 2001] Esteva, M., Rodriguez-Aguilar, J., Sierra, C., Garcia, P., and Arcos,
J. L. (2001). On the Formal Specification of Electronic Institutions. In Lecture Notes
in Artificial Intelligence, volume 1991, pages 126—147. Springer-Verlag.

[Etzioni and Weld, 1994] Etzioni, O. and Weld, D. (1994). A Softbot-Based Interface to
the Internet. Communications of the ACM, 37(7):72-76.

[Fayol, 1949] Fayol, H. (1949). General and industrial management. New York: Pitman.
First published in French in 1916.

[Fensel et al., 1999a] Fensel, D., Benjamins, V., Decker, S., Gaspari, M., Groenboom, R.,
Grosso, W., Musen, M., Motta, E., Plaza, E., Schreiber, A., Studer, R., and Wielinga,
B. (1999a). The component model of UPML in a nutshell. In Proceedings of the First
Working IFIP Conference on Software Architecture (WICSAI), San Antonio, Texas.

Bibliography 193

[Fensel et al., 1999b] Fensel, D., Benjamins, V., Motta, E., and Wielinga, B. (1999b).
UPML: A framework for knowledge system reuse. In Proceedings of IJCAI-99, Stock-
holm, Sweden.

[Fensel and Motta, 2001] Fensel, D. and Motta, E. (2001). Structured Development of
Problem Solving Methods. IEEE Transactions on Knowledge and Data Engineering,
13(6):931-932.

[Ferber, 1999] Ferber, J. (1999). Multi-Agent Systems. Addison-Wesley, Reading, MA.

[Fernandez-Loépez et al., 1999] Ferndndez-Lbépez, M., Gomez-Pérez, A., Sierra, J. P., and
Sierra, A. P. (1999). Building a chemical ontology using Methontology and the Ontol-
ogy Design Environment. Intelligent Systems, 14(1):37-45.

[FIPA, 2001] FIPA (2001). FIPA Ontology Service Specification. Tech-
nical Report XF000086, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00086/.

[FIPA, 2002a] FIPA (2002a). FIPA Abstract Architecture Specification.
Technical Report SCO00001L, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00001/.

[FIPA, 2002b] FIPA (2002b). FIPA ACL Message Structure Specification.
Technical Report SC00061, Foundation for Intelligent Physical Agents,
http://www fipa.org/specs/fipa00061/.

[FIPA, 2002c] FIPA (2002c). FIPA Agent Management Specification.
Technical Report SC00023, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00023/.

[FIPA, 2002d] FIPA (2002d). FIPA Communicative Act Library Specifica-
tion. Technical Report SC00037J, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00037.

[FIPA, 2002e] FIPA (2002e). FIPA Contract Net Interaction Protocol Specifica-
tion. Technical Report SC00029, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00029/.

[FIPA, 2002f] FIPA (2002f). FIPA Dutch Auction Interaction Protocol Specifica-
tion. Technical Report XC00032, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00032/.

[FIPA, 2002g] FIPA (2002g). FIPA English Auction Interaction Protocol Specifi-
cation. Technical Report XC00031, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00031/.

[FIPA, 2002h] FIPA (2002h). FIPA Request Interaction Protocol Specifica-
tion. Technical Report SCO0026H, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00026.

194 Bibliography

[FIPA, 2002i] FIPA (2002i). FIPA SL Content Language Specification.
Technical Report SC00008, Foundation for Intelligent Physical Agents,
http://www.fipa.org/specs/fipa00008/.

[Fox, 1981] Fox, M. (1981). An organizational view of distributed systems. /EEE Trans-
actions on system, man and cybernetics, 11(1):70-80.

[Franklin and Graesser, 1996] Franklin, S. and Graesser, A. (1996). Is it an agent, or
just a program? A taxonomy of Autonomous Agents. In Proceedings of the Third
International on Agent Theories, Architectures and Languages.

[Frey et al., 2003] Frey, D., Nimis, J., Worn, H., and Lockemann, P. (2003). Benchmark-
ing and Robust Multi-agent-based Production Planning and Control. The International
Journal of Intelligent Real-Time Automation. In Print.

[Galbraith, 1973] Galbraith, J. (1973). Designing complex Organizations. Addison-
Wesley.

[Gaspari and Motta, 1994] Gaspari, M. and Motta, E. (1994). Symbol-level Require-
ments for Agent-level Programming. In Cohn, A., editor, proc. of the 11th European
Conference on Artificial Intelligence.

[Geis, 1995] Geis, M. (1995). Speech Acts and Conversational Interaction. Cambridge
University Press.

[Genesereth, 1997] Genesereth, M. (1997). An Agent-based Framework for Interoper-
ability. Software Agents, J.M. Bradshaw (Ed.), pages 317-345.

[Genesereth and Ketchpel, 1994] Genesereth, M. and Ketchpel, S. (1994). Software
agents. Communications of the ACM, 37(7):48-53.

[Gomez-Perez, 1999] Gomez-Perez, A. (1999). Ontological engineering: A state of the
art. Expert Update, 2(3):33-43.

[Gosselin, 1978] Gosselin, R. (1978). A Study on the Interdependence of Medical Spe-
cialists in Quebec Teaching Hospitals. PhD thesis, Faculty of Management, McGill
University, Montreal.

[Gruber, 1993] Gruber, T. (1993). A Translation Approach to Portable Ontology Speci-
fications. Knowledge Acquisition, 5(2):199-220.

[Gruber and Olsen, 1994] Gruber, T. and Olsen, G. (1994). An ontology for engineering
mathematics. Technical Report KSL-94-18, Knowledge Systems Laboratory, Stanford
University,.

[Gruninger and Fox, 1994] Gruninger, M. and Fox, M. (1994). The Role of Competency
Questions in Enterprise Engineering. In Workshop on Benchmarking - Theory and
Practice.

Bibliography 195

[Guarino, 1998] Guarino, N. (1998). Formal Ontology and Information Systems. In
1st International Conference on Formal Ontologies in Information Systems, FOIS’ 98,
Trento.

[Haddadi, 1995] Haddadi, A. (1995). Communication and Cooperation in Agent Sys-
tems. Berlin, Springer-Verlag.

[Haustein and Luedecke, 2000] Haustein, S. and Luedecke, S. (2000). Towards informa-
tion agent interoperability. In Cooperative Information Agents, pages 208-219.

[Hendler, 2001] Hendler, J. (2001). Agents and the semantic web. IEEE Intelligent
Systems, 16(2):30-37.

[Hewitt, 1991] Hewitt, C. (1991). Open systems semantics for distributed artificial intel-
ligence. Artificial intelligence, 47(1):79-106.

[Huget, 2002] Huget, M. (2002). An Application of Agent UML to Supply Chain Man-
agement. In Proceedings of Agent Oriented Information System (AOIS-02).

[Huhns and Stephens, 1999] Huhns, M. and Stephens, L. (1999). Multiagent systems
and societies of agents. In Weiss, G., editor, Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence, pages 79—120. The MIT Press, Cambridge, MA,
USA.

[Jennings, 2000] Jennings, N. (2000). On agent-based software engineering. Artificial
Intelligence, 177(2):277-296.

[Labrou et al., 1999] Labrou, Y., Finin, T., and Peng, Y. (1999). The current landscape
of agent communication languages.

[Levinson, 1991] Levinson, S. (1991). Pragmatics. Cambridge University Press, Cam-
bridge.

[Lomuscio et al., 2003] Lomuscio, A. R., Wooldridge, M., and Jennings, N. (2003). A
classification scheme for negotiation in electronic commerce. International Journal of
Group Decision and Negotiation, 12(1):31-56.

[Luck et al., 2003] Luck, M., McBurney, P., and Preist, C. (2003). Agent Technol-
0gy: Enabling Next Generation Computing: A Roadmap for Agent Based Computing.
AgentLink II.

[Maes, 1986] Maes, P. (1986). Introspection in knowledge representation. In Proceed-
ings of the 7th European Conference on Artificial Intelligence (ECAI).

[Maes, 1994] Maes, P. (1994). Agents that reduce work and information overload. Com-
munications of the ACM, 37(7):31-40.

[Maes, 1998] Maes, P. (1998). Computational reflection. The Knowledge Engineering
Review, 3(1):1-19.

196 Bibliography

[Malone, 1987] Malone, T. (1987). Modeling Coordination in Organizations and Mar-
kets. Management Sciences, 33(10)(1317-1332).

[Malone and Crowston, 1993] Malone, T. and Crowston, K. (1993). What is coordina-
tion theory and how can it help design cooperative work systems. Readings in group-
ware and computer- supported cooperative work, assisting human-human collabora-
tion.

[Malone and Crowston, 1994] Malone, T. and Crowston, K. (1994). The interdisci-
plinary study of coordination. ACM Computing Surveys, 26(1):87-119.

[Mintzberg, 1993] Mintzberg, H. (1993). Structures in fives: designing effective organi-
zations. Englewood Cliffs, N.J. Prentice Hall.

[Morgan, 1996] Morgan, G. (1996). Images of organization. Sage Publications.

[Motta, 1999] Motta, E. (1999). Reusable Components for Knowledge Modelling: Prin-
ciples and Case Studies in Parametric Design. 10S Press, Amsterdam.

[Motta and Lu, 2000] Motta, E. and Lu, W. (2000). A library of Components for Classi-
fication Problem Solving. In PKAW: The 2000 Pacific Knowledge Acquisition Work-
shop.

[Neches et al., 1991] Neches, R., Fikes, R., Finin, T., T., G., Patil, R., Senatir, T., and
Swarout, W. (1991). Enabling technology for knowledge sharing. Al Magazine,
12(3):36-56.

[Newell, 1982] Newell, A. (1982). The Knowledge Level. Artificial Intelligence,
18(1):87-127.

[Noy et al., 2000] Noy, N., Fergerson, R., and Musen, M. (2000). The knowledge model
of Protege-2000: Combining interoperability and flexibility. In 2¢th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW’2000), Juan-
les-Pins, France.

[Noy and McGuinness, 2001] Noy, N. and McGuinness, D. L. (2001). Ontology De-
velopment 101: A Guide to Creating Your First Ontology. 2001. Technical report,
Stanford Medical Informatics.

[Nwana, 1996] Nwana, H. (1996). Software Agents: An Overview. Knowledge Engi-
neering Review, 11(3):205-244.

[Odell et al., 2000] Odell, J., Van Dyke, H., and Bauer, B. (2000). Extending UML for
agents. In Wagner, G., Lesperance Y., and Yu, E., editors, Proc. Of the Agent-Oriented
Information Systems Workshop at the 17th National Conference on Artificial Intelli-
gence.

[O’Hare and Jennings, 1996] O’Hare, G. and Jennings, N. (1996). Foundations of Dis-
tributed Artificial Intelligence. John Wiley & Sons.

Bibliography 197

[Omelayenko et al., 2000] Omelayenko, B., Crubézy, M., Fensel, D., Ding, Y., Motta, E.,
and Musen, M. (2000). Meta Data and UPML, UPML version 2.0. Technical report,
Deliverable D5, IBROW project.

[Ossowski, 1999] Ossowski, S. (1999). Co-ordination in Artificial Agent Societies.
Springer-Verlag New York.

[Pinto and Martins, 2000] Pinto, H. and Martins, J. (2000). Reusing Ontologies. In AAAI
2000 Spring Symposium Series, Workshop on Bringing Knowledge to Business Pro-
cesses.

[Powers, 2003] Powers, S. (2003). PracticalRDF. O’Reilly.

[Rao and Georgeff, 1995] Rao, A. and Georgeff, M. (1995). BDI Agents: From The-
ory to Practice. In Proceedings of the First International Conference on Multi-agent
systems, (ICMAS-95), pages 312-319.

[Rodriguez-Aguilar et al., 1998] Rodriguez-Aguilar, J., Martin, F., Noriega, P., Garcia,
P, and Sierra, C. (1998). Towards a test-bed for trading agents in electronic auction
markets. AI Communications, 11(1):5-19.

[Schmidt et al., 2000] Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F. (2000).
Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Ob-
Jjects. Wiley and Sons.

[Schreiber et al., 1999] Schreiber, A., Akkermans, H., Anjewierden, A., de Hoog, R.,
Shadbolt, N., Van de Velde, W., and Wielinga, B. (1999). Knowledge Engineering
and Management: the CommonKADS Methodology. The MIT Press.

[Searle, 1969] Searle, J. (1969). Seech Acts. Cambridge University Press.

[Shoham, 1993] Shoham, Y., . (1993). Agent oriented programming. Artificial Intelli-
gence, 60(1):51-92.

[Singh, 1998] Singh, M. (1998). Agent Communication Languages: Rethinking the Prin-
ciples. IEEE Computer, 31(12):40—47.

[Smith, 1776] Smith, A. (1776). Wealth of Nations.
[Sommerville, 1995] Sommerville, I. (1995). Software Engineering. Addison-Wesley.

[Studer et al., 1998] Studer, R., Benjamins, V., and Fensel, D. (1998). Knowledge engi-
neering, principles and methods. Data and Knowledge Engineering,25(1-2):161-197.

[Sycara et al., 2003] Sycara, K., Paolucci, M., van Velsen, M., and Giampapa, J. (2003).
The RETSINA MAS Infrastructure. Autonomous Agents and MAS, 7(1).

[Taylor, 1947] Taylor, E. (1947). Scientific management. Harper & Row, New York. First
published in 1911.

198 Bibliography

[Uschold and Griininger, 1996] Uschold, M. and Griininger, M. (1996). Ontologies:
principles, methods, and applications. Knowledge Engineering Review, 11(2):93-155.

[Uschold et al., 1998] Uschold, M., King, M., Moralee, S., and Zorgios, Y. (1998). The
Enterprise Ontology. The Knowledge Engineering Review.

[van Aart, 2004] van Aart, C. (2004). Organization Building Blocks for Design of Dis-
tributed Intelligent Systems. International Journal of Human Computer Studies. in
press.

[van Aart and Jansweijer, 2003] van Aart, C. and Jansweijer, W. (2003). Interoperability.
Technical report, Deliverable 10, IBROW project.

[van Aart et al., 2002a] van Aart, C., Pels, R., Giovanni, C., and Bergenti, F. (2002a).
Creating and Using Ontologies in Agent Communication. Workshop on Ontologies
and Agent Systems at AAMAS 2002.

[van Aart et al., 2000] van Aart, C., Van Marcke, K., and Eriksen, L. (2000). Agentbased
Logistic Sevice Provision. In Proc. the Fifth International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology (PAAM 2000), London.

[van Aart et al., 2002b] van Aart, C., Van Marcke, K., Pels, R., and Smulders, J. (2002b).
International Insurance Traffic with Software Agents. In F. van Harmelen, editor, Pro-
ceedings of the 15th European Conference on Artificial Intelligence. 10S Press, Ams-
terdam.

[van Heijst et al., 1997] van Heijst, G., Schreiber, A., and Wielinga, B. (1997). Using
explicit ontologies for KBS development. International Journal of Human-Computer
Studies, 46(2/3):183-292.

[Varga and Hajna, 2003] Varga, L. and Hajna, A. (2003). Engineering Web Service Invo-
cations from Agent Systems. Multi-Agent Systems and Applications III, Lecture Notes
in Computer Science Vol. 2691.

[Verharen, 1997] Verharen, E. (1997). A Language-Action Perspective on the Design of
Cooperative Information Agents. PhD thesis, Katholieke Universiteit Brabant Tilburg.

[Weigand and Hasselbring, 2001] Weigand, H. and Hasselbring, W. (2001). An Extensi-
ble Business Communication Language. International Journal of Cooperative Infor-
mation System, 10(4):423-411.

[Weiss, 1999] Weiss, G. (1999). Multiagent Systems: A modern approach to distributed
artificial intelligence. MIT Press, London.

[Wielinga et al., 2003] Wielinga, B., Anjewierden, A., van Aart, C., and Jansweijer, W.
(2003). Brokering in IBROW. Technical report, Deliverable 15, IBROW project.

[Wooldridge, 2002] Wooldridge, M. (2002). An Introduction to Multi-Agent Systems.
John Wiley and Sons Ltd., Chichester, UK.

Bibliography 199

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. (1995). Intelligent
agents: theory and practice. The Knowledge Engineering Review, 10(2):115-152.

[Wooldridge and Jennings, 1998] Wooldridge, M. and Jennings, N. (1998). Pitfalls of
Agent-Oriented Development. In Proceedings of the Second International COnference
on Autonomous Agents. ACM Press.

[Wooldridge et al., 2000] Wooldridge, M., Jennings, N., and Kinny, D. (2000). The Gaia
methodology for agent-oriented analysis and design. Internat. J. Autonomous Agents
and Multi-Agent Systems 3.

[Zambonelli et al., 2000] Zambonelli, F., Jennings, N., and Wooldridge, M. (2000). Or-
ganisational abstractions for the analysis and design of multi-agent systems. In Proc.
Ist int workshop on agent-oriented software engineering.

Index

5C model, 76, 107, 158, 172
communication model, 78, 107,
158
competence model, 77, 107
environment model, 81
planner model, 80
self model, 79

adhocracy, 20, 32
agent design, 76
(static) broker agent, 104
article expert agent, 171
buyer agent, 158
classifier, 50, 134
document extractor, 134
document obtainer, 133
kir agent, 90
law expert agent, 170
law services broker, 172
library agent, 104
Manager, 64
manager, 105
obtainer, 50
Operator, 63
operator, 105
personal law assistant, 173
reconfigurator, 104
rules expert agent, 171
searcher, 50
user agent, 103
web expert agent, 171
agent design and analysis framework, 76
agent organization framework, 11
agent-based supply chain management,
23

Akkermans, H., 45, 99

Anjewierden, A., 45,99, 103, 111, 130,
135

Arcos, J. L., 10

Austin, J.L, 142, 146

Bailin, S.C., 157

Bauer, B., 22, 26, 54, 62, 89

Bellifemine, F., 94, 108, 109, 118, 122,
159

Benjamins, V.R., 45,101,104, 108, 111,
140, 177

Bergenti, F.,, 110

Berners-Lee, T., 4

Bond, A., 2-5, 22, 26, 86, 100, 142

Borst, W. N., 141

Bradshaw, J.M., 3, 82

Caire G., 109, 122, 159
Carley, K., 2,4, 10
case study
agent-based supply chain manage-
ment, 23
classification of conference sub-
missions, 129
international insurance traffic, 84
legal advisor, 170
web resource classification, 50
Castelfranchi, C., 80
Chavez, A., 147
communication model, 78
competence model, 77
coordination, 2
direct supervision, 17, 50
explicit, 44

Index

implicit, 44
mechanism, 16
mutual adjustment, 17, 59
problem-solving, 45
standardization of work, 17, 55
strategy method, 49
task-method ontology, 47
coordination task, 45
Corkill, D, 3,4
Cranefield, S., 142, 153
Crowston, K., 2, 16, 43, 44, 48
Crubézy, M., 104

Davis, R., 14

de Hoog, R, 45, 99

Decker, S., 111
decomposition principles, 12
Ding, Y., 104

Dinkloh, M., 169

direct supervision, 17, 50
division of labor, 1

environment model, 81
Eriksen, L.N., 75, 76
Eriksson, H., 101
Esteva, M., 10
Etzioni, O., 82

Fayol, H., 2

Fensel, D., 45, 101, 104, 108, 111, 140,
177

Ferber, J., 10, 146

Fergerson, R., 141, 162

Fernandez-Lépez, M., 141

Fikes, R., 140

Finin, T., 140

Finin, T. , 109, 140, 142, 146, 147, 159,
160

FIPA, 3, 26, 63, 68, 78, 89, 108, 109,
120, 127, 140, 142, 146, 147,
150, 157, 160

Five capabilities model, 76

Fox, M., 2, 4, 10, 149

framework

201

agent design and analysis, 76
agent organization, 11
interoperability, 108
message content ontology, 142
Franklin, S, 3
Frey, D., 169

Gomez-Pérez, A., 141
Galbraith, J., 1,2, 11, 177
Garcia, P, 10, 147
Gaspari, M., 78, 80, 111
Gasser, L., 2-5, 10, 22, 26, 86, 100, 142
Geis, M.L., 143
Genesereth, M., 77, 89, 100, 102, 106,
119, 140
Georgeff, M., 80
Giampapa, J., 96
Giovanni, C., 110
Gomez-Perez, A., 141, 143
Gosselin, R., 17
Griininger, M., 155
Graesser, A., 3
Groenboom, R., 111
Grosso, W., 111
Gruber T., 140
Gruber, T.R., 141
Gruninger, M., 149
Guarino, N., 141

Haddadi, A., 146, 147

Hajna, A., 169

Hasselbring, W., 140, 146, 149
Haustein, S., 108

Hendler, J., 4, 59, 110

Hewitt, C., 2, 10

Huget, M.P, 23

Huhns, M.N., 109, 140

ibrow project, 99
intelligent agent, 3
architecture, 83
communication, 78
model, 76
service, 77

202

interoperability, 99
interoperability framework, 108
introspection, 79

Jansweijer, W., 103, 111, 122, 130, 135

Jennings, N., 3, 5, 10, 18, 37, 44,70, 78,
148

job, 14

Ketchpel, S., 77, 89, 102, 106, 119, 140
King, M., 149
Kinny, D., 10
kir system, 90

Labrou, Y., 109, 140, 142, 146, 147,
159, 160

Lander, S., 3,4

Lassila, O.., 4

Levinson, S.C., 143

life cycle management, 63, 79, 120

Lockemann, P., 169

Lomuscio, A. R., 148

Lu, W, 101

Luck, M., 3, 152, 159

Luedecke, S., 108

machine bureaucracy, 18, 28
Maes, P., 78-80, 82, 147
Malone, T.W.,, 2, 10, 16, 36, 43, 44, 48
Manager, 46, 50
manager, 11
MAP, see multi-agent plan, 101
Martin, EJ., 147
Martins, J.P, 143
MAS, see multi-agent system, 107
McBurney, P, 3, 152, 159
McGuinness, D. L., 141, 153, 159
message content ontology, 26, 142
application, 167
creation, 159
Mintzberg, H., 1, 11, 15, 18-20, 44, 49,
50, 55, 57,59, 70
Moralee, S., 149
Morgan, G., 2, 12,76

Index

Motta, E., 45, 78, 80, 101, 104, 108,
111,177
multi-agent architecture
agent-based logistic service provi-
sion, 90
agent-based supply chain manage-
ment, 23
IBROW system, 102
legal advisor, 170
web resource classification, 50
multi-agent plan, 101
multi-agent system, 1, 107
Musen, M., 101, 104, 111, 141, 162
mutual adjustment, 17, 59

Neches, R., 140

Newell, A., 77

Nimis, J., 169

Noriega, P., 147

Noy, N., 141, 153, 159, 162
Nwana, H., 3, 81

O’Hare, G., 10
object, 14
Odell, J., 22, 26, 54, 62, 89
Olsen, G.R., 141
Omelayenko, B., 104
ontology
agent communication, 142, 143
agent role, 149
classification, 131
conversation domain, 145
coordination task-method, 47
domain, 113
handling, 78
message content, 26
operation, 112
performative, 146
process, 111
protocol, 147
task, 111
task-method, 111
dovar MAS design, 12
Operator, 50

Index

operator, 11, 46
organigram, 18
organization
concepts, 12
coordination, 16
design, 22
mechanistic, 1
organic, 2
principles, 11
structure, 18
organizational structure, 18
adhocracy, 20
machine bureaucracy, 18
professional bureaucracy, 19
Ossowski, S., 44

Paolucci, M., 96
Patil, R., 140
Pels,R.F, 11,76, 84, 110
Peng, Y., 109, 140, 142, 146, 147, 159,
160
Peurta, A.R., 101
pigeon holing, 57
pigeonholing, 20
Pinto, H.S., 143
planner model, 80
Plaza, E., 45, 101, 111
Poggi, A., 94, 108, 118
Powers, S., 4
Preist, C., 3, 152, 159
problem-solving method, 45, 99, 104
professional bureaucracy, 19, 30
prototype
agent-based supply chain manage-
ment, 33
classification of conference sub-
missions, 129
IBROW system, 117
legal advisor, 170
web resource classification, 65
PSM, see problem-solving method, 45
Purvis, M., 142, 153

Rao, A., 80

203

reflection, 79

requester, 46

Rimassa, G., 94, 108, 109, 118, 122, 159
Rodriguez-Aguilar, J.A., 10, 147

Schreiber, A.Th., 45,99, 101, 111, 141
Searle, J.R., 79, 142, 146

self model, 79

Senatir, T., 140

Shadbolt, N., 45, 99

Shahar, Y., 101

Shoham, Y., ., 142

Sierra, A. P., 141

Sierra, C., 10, 147

Sierra, J. P., 141

Singh, M.P., 146

Smith, A, 1

Smith, R.G., 14

Smulders, J.L.C.F, 11, 76, 84
Sommerville, 1., 65
standardization of work, 17, 55
Stephens, L.M., 109, 140
Studer, R., 45, 101, 111, 140
Swarout, W., 140

Sycara, K., 96

Taylor, F.,, 2

technical activity, 14
transducer, 89, 106
Trucco, T., 109, 122, 159
Truszkowski, W., 157
Tu, S.W., 101

Uschold, M., 149, 155

van Aart, C.J., 9, 11, 75, 76, 84, 103,
110, 111, 122, 130, 135

Van de Velde, W., 45, 99

Van Dyke, H. , 22, 26, 54, 62, 89

van Heijst, G., 141

Van Marcke, K., 11, 75, 76, 84

van Velsen, M., 96

Varga, L.Z., 169

Verharen, E.M., 82

204

Worn, H., 169

web service, 99, 173

Weigand, H., 140, 146, 149

Weiss,G., 3

Weld, D., 82

Wielinga, B.J., 45, 99, 101, 103, 104,
108, 111, 130, 135, 141, 177

Wooldridge, M., 3, 10, 44, 70, 78, 80,
102, 108, 148

wrapper, 100

Zambonelli, F., 10
Zdrahal, Z., 45, 101
Zorgios, Y., 149

Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

